Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste fr...Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste from EV battery packs could be generated from 2015 to 2040.LIB recycling directly addresses concerns over longterm economic strains due to the uneven geographic distribution of resources(especially for Co and Li)and environmental issues associated with both landfilling and raw material extraction.However,LIB recycling infrastructure has not been widely adopted,and current facilities are mostly focused on Co recovery for economic gains.This incentive will decline due to shifting market trends from LiCoO2 toward cobalt-deficient and mixed-metal cathodes(eg,LiNi1/3Mn1/3Co1/3O2).Thus,this review covers recycling strategies to recover metals in mixed-metal LIB cathodes and comingled scrap comprising different chemistries.As such,hydrometallurgical processes can meet this criterion,while also requiring a low environmental footprint and energy consumption compared to pyrometallurgy.Following pretreatment to separate the cathode from other battery components,the active material is dissolved entirely by reductive acid leaching.A complex leachate is generated,comprising cathode metals(Li+,Ni2+,Mn2+,and Co2+)and impurities(Fe3+,Al3+,and Cu2+)from the current collectors and battery casing,which can be separated and purified using a series of selective precipitation and/or solvent extraction steps.Alternatively,the cathode can be resynthesized directly from the leachate.展开更多
The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal...The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.展开更多
基金The authors gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)and the University of Waterloo.This work was financially supported by the 111 Project(no.D17007).Karthikeyan Kaliyappan acknowledges the financial support from Henan Normal University,China for this work.Tyler Or was supported through the NSERC Canada Graduate Scholarships—Master’s Program.
文摘Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste from EV battery packs could be generated from 2015 to 2040.LIB recycling directly addresses concerns over longterm economic strains due to the uneven geographic distribution of resources(especially for Co and Li)and environmental issues associated with both landfilling and raw material extraction.However,LIB recycling infrastructure has not been widely adopted,and current facilities are mostly focused on Co recovery for economic gains.This incentive will decline due to shifting market trends from LiCoO2 toward cobalt-deficient and mixed-metal cathodes(eg,LiNi1/3Mn1/3Co1/3O2).Thus,this review covers recycling strategies to recover metals in mixed-metal LIB cathodes and comingled scrap comprising different chemistries.As such,hydrometallurgical processes can meet this criterion,while also requiring a low environmental footprint and energy consumption compared to pyrometallurgy.Following pretreatment to separate the cathode from other battery components,the active material is dissolved entirely by reductive acid leaching.A complex leachate is generated,comprising cathode metals(Li+,Ni2+,Mn2+,and Co2+)and impurities(Fe3+,Al3+,and Cu2+)from the current collectors and battery casing,which can be separated and purified using a series of selective precipitation and/or solvent extraction steps.Alternatively,the cathode can be resynthesized directly from the leachate.
基金Project(05KJD6010110) supported by the Natural Science Foundation of the Education Commission of Jiangsu Province,ChinaProject(2005005) supported by the Science and Technology Foundation of the Environmental Protection Bureau of Jiangsu Province,China
文摘The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.