The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students...The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature.展开更多
文摘The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature.