The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-s...The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-sights into disease dynamics.However,the intricate web of modern global interactions and the exponential growth of available data demand more advanced predictive tools.This is where AI for Science(AI4S)comes into play,offering a transformative approach by integrating artificial intelligence(Al)into infectious disease pre-diction.This paper elucidates the pivotal role of AI4s in enhancing and,in some instances,superseding tradi-tional epidemiological methodologies.By harnessing AI's capabilities,AI4S facilitates real-time monitoring,sophisticated data integration,and predictive modeling with enhanced precision.The comparative analysis highlights the stark contrast between conventional models and the innovative strategies enabled by AI4S.In essence,Al4S represents a paradigm shift in infectious disease research.It addresses the limitations of traditional models and paves the way for a more proactive and informed response to future outbreaks.As we navigate the complexities of global health challenges,Al4S stands as a beacon,signifying the next phase of evolution in disease prediction,characterized by increased accuracy,adaptability,and efficiency.展开更多
人工智能驱动的科学(artificial intelligence for science, AI4S)的兴起,使得如何确保科学系统的公开性、公平性、公正性和多样可持续性变得尤为重要和迫切。这关系到各国在全球创新和产业革新中的话语权和领导地位,同时也影响人类命...人工智能驱动的科学(artificial intelligence for science, AI4S)的兴起,使得如何确保科学系统的公开性、公平性、公正性和多样可持续性变得尤为重要和迫切。这关系到各国在全球创新和产业革新中的话语权和领导地位,同时也影响人类命运共同体的安全、稳定与可持续发展。为了应对这些挑战,AI4S需要引入新的科学组织和运营方式。基于Web3和分布式自主组织与运营(DAOs)等智能技术之上的分布式自主科学(decentralized science,DeSci)与AI4S相辅相成,为AI4S提供强有力的支撑。DeSci可以有效解决现有科研体系中的信息孤岛、偏见、不公平分配和垄断等问题,进而促进多学科、跨学科和交叉学科合作。文章首先从理论层面对DeSci的基本概念、特征和框架进行界定,其次分析DeSci的研究现状与应用现状,最后探讨和总结DeSci对于科学系统进一步发展的启示与意义。展开更多
基金This work was supported in part by the New Generation Artificial Intelligence Development Plan of China(2015-2030)(Grant No.2021ZD0111205)the National Natural Science Foundation of China(Grant Nos.72025404,72293575 and 72074209).
文摘The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-sights into disease dynamics.However,the intricate web of modern global interactions and the exponential growth of available data demand more advanced predictive tools.This is where AI for Science(AI4S)comes into play,offering a transformative approach by integrating artificial intelligence(Al)into infectious disease pre-diction.This paper elucidates the pivotal role of AI4s in enhancing and,in some instances,superseding tradi-tional epidemiological methodologies.By harnessing AI's capabilities,AI4S facilitates real-time monitoring,sophisticated data integration,and predictive modeling with enhanced precision.The comparative analysis highlights the stark contrast between conventional models and the innovative strategies enabled by AI4S.In essence,Al4S represents a paradigm shift in infectious disease research.It addresses the limitations of traditional models and paves the way for a more proactive and informed response to future outbreaks.As we navigate the complexities of global health challenges,Al4S stands as a beacon,signifying the next phase of evolution in disease prediction,characterized by increased accuracy,adaptability,and efficiency.