期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AI for science: Predicting infectious diseases
1
作者 Alexis Pengfei Zhao Shuangqi Li +5 位作者 Zhidong Cao Paul Jen-Hwa Hu Jiaojiao Wang Yue Xiang Da Xie Xi Lu 《Journal of Safety Science and Resilience》 EI CSCD 2024年第2期130-146,共17页
The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-s... The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-sights into disease dynamics.However,the intricate web of modern global interactions and the exponential growth of available data demand more advanced predictive tools.This is where AI for Science(AI4S)comes into play,offering a transformative approach by integrating artificial intelligence(Al)into infectious disease pre-diction.This paper elucidates the pivotal role of AI4s in enhancing and,in some instances,superseding tradi-tional epidemiological methodologies.By harnessing AI's capabilities,AI4S facilitates real-time monitoring,sophisticated data integration,and predictive modeling with enhanced precision.The comparative analysis highlights the stark contrast between conventional models and the innovative strategies enabled by AI4S.In essence,Al4S represents a paradigm shift in infectious disease research.It addresses the limitations of traditional models and paves the way for a more proactive and informed response to future outbreaks.As we navigate the complexities of global health challenges,Al4S stands as a beacon,signifying the next phase of evolution in disease prediction,characterized by increased accuracy,adaptability,and efficiency. 展开更多
关键词 ai for science(ai4S) Data integration Global healthchallenges Infectious disease prediction Predictive modeling Real-timemonitoring
原文传递
分布式自主科学:科学多样可持续性发展的新范式 被引量:3
2
作者 王飞跃 丁文文 《中国科学院院刊》 CSSCI CSCD 北大核心 2023年第10期1501-1509,共9页
人工智能驱动的科学(artificial intelligence for science, AI4S)的兴起,使得如何确保科学系统的公开性、公平性、公正性和多样可持续性变得尤为重要和迫切。这关系到各国在全球创新和产业革新中的话语权和领导地位,同时也影响人类命... 人工智能驱动的科学(artificial intelligence for science, AI4S)的兴起,使得如何确保科学系统的公开性、公平性、公正性和多样可持续性变得尤为重要和迫切。这关系到各国在全球创新和产业革新中的话语权和领导地位,同时也影响人类命运共同体的安全、稳定与可持续发展。为了应对这些挑战,AI4S需要引入新的科学组织和运营方式。基于Web3和分布式自主组织与运营(DAOs)等智能技术之上的分布式自主科学(decentralized science,DeSci)与AI4S相辅相成,为AI4S提供强有力的支撑。DeSci可以有效解决现有科研体系中的信息孤岛、偏见、不公平分配和垄断等问题,进而促进多学科、跨学科和交叉学科合作。文章首先从理论层面对DeSci的基本概念、特征和框架进行界定,其次分析DeSci的研究现状与应用现状,最后探讨和总结DeSci对于科学系统进一步发展的启示与意义。 展开更多
关键词 智能科学 分布式自主科学 分布式自主组织 人工智能驱动的科学 生成式人工智能 ChatGPT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部