为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花...为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花算法是一种启发式算法,利用爆炸算子、高斯变异和选择策略能较快地寻找到全局最优解。通过在Cloudsim上与粒子群优化算法(PSO)和遗传算法(GA)进行有效性和执行时间上的对比,结果表明烟花算法在不同实验次数下可持续得到最优适应度值,而且在种群规模不断扩大时,烟花算法的执行时间没有陡然增加,明显优于PSO算法和GA算法。展开更多
文摘为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花算法是一种启发式算法,利用爆炸算子、高斯变异和选择策略能较快地寻找到全局最优解。通过在Cloudsim上与粒子群优化算法(PSO)和遗传算法(GA)进行有效性和执行时间上的对比,结果表明烟花算法在不同实验次数下可持续得到最优适应度值,而且在种群规模不断扩大时,烟花算法的执行时间没有陡然增加,明显优于PSO算法和GA算法。