This paper investigates the boost phase's longitudinal autopilot of a ballistic missile equipped with thrust vector control. The existing longitudinal autopilot employs time-invariant passive resistor-inductor-capaci...This paper investigates the boost phase's longitudinal autopilot of a ballistic missile equipped with thrust vector control. The existing longitudinal autopilot employs time-invariant passive resistor-inductor-capacitor (RLC) network compensator as a control strategy, which does not take into account the time-varying missile dynamics. This may cause the closed-loop system instability in the presence of large disturbance and dynamics uncertainty. Therefore, the existing controller should be redesigned to achieve more stable vehicle response. In this paper, based on gain-scheduling adaptive control strategy, two different types of optimal controllers are proposed. The first controller is gain-scheduled optimal tuning-proportional-integral-derivative (PID) with actuator constraints, which supplies better response but requires a priori knowledge of the system dynamics. Moreover, the controller has oscillatory response in the presence of dynamic uncertainty. Taking this into account, gain-scheduled optimal linear quadratic (LQ) in conjunction with optimal tuning-compensator offers the greatest scope for controller improvement in the presence of dynamic uncertainty and large disturbance. The latter controller is tested through various scenarios for the validated nonlinear dynamic flight model of the real ballistic missile system with autopilot exposed to external disturbances.展开更多
基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模...基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模式及其优化方向,本文首先回顾了RMFS的工作流程及优化理论框架,然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结,并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的不足.最后,讨论了RMFS的几个重要研究方向,为RMFS的理论研究和应用实践提供参考.展开更多
基金National Natural Science Foundation of China (60904066)National Basic Research Program of China (2010CB327904)"Weishi" Young Teachers Talent Cultivation Foundation of Beihang University (YWF-11-03-Q-013)
文摘This paper investigates the boost phase's longitudinal autopilot of a ballistic missile equipped with thrust vector control. The existing longitudinal autopilot employs time-invariant passive resistor-inductor-capacitor (RLC) network compensator as a control strategy, which does not take into account the time-varying missile dynamics. This may cause the closed-loop system instability in the presence of large disturbance and dynamics uncertainty. Therefore, the existing controller should be redesigned to achieve more stable vehicle response. In this paper, based on gain-scheduling adaptive control strategy, two different types of optimal controllers are proposed. The first controller is gain-scheduled optimal tuning-proportional-integral-derivative (PID) with actuator constraints, which supplies better response but requires a priori knowledge of the system dynamics. Moreover, the controller has oscillatory response in the presence of dynamic uncertainty. Taking this into account, gain-scheduled optimal linear quadratic (LQ) in conjunction with optimal tuning-compensator offers the greatest scope for controller improvement in the presence of dynamic uncertainty and large disturbance. The latter controller is tested through various scenarios for the validated nonlinear dynamic flight model of the real ballistic missile system with autopilot exposed to external disturbances.
文摘基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模式及其优化方向,本文首先回顾了RMFS的工作流程及优化理论框架,然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结,并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的不足.最后,讨论了RMFS的几个重要研究方向,为RMFS的理论研究和应用实践提供参考.