Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus ...Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus light through inhomogeneous media, which is vital for optical imaging, communication,therapy, etc. Wavefront shaping based on the scattering matrix (SM) is extremely useful in handling dynamicprocesses in the linear regime. However, the implementation of such a method for controlling light in nonlinearmedia is still a challenge and has been unexplored until now. We report a method to determine the SM ofnonlinear scattering media with second-order nonlinearity. We experimentally demonstrate its feasibility inwavefront control and realize focusing of nonlinear signals through strongly scattering quadratic media.Moreover, we show that statistical properties of this SM still follow the random matrix theory. The scattering-matrix approach of nonlinear scattering medium opens a path toward nonlinear signal recovery, nonlinearimaging, microscopic object tracking, and complex environment quantum information processing.展开更多
基金supported in part by the National Key R&D Program of China (No. 2018YFA0306301)the National Natural Science Foundation of China (Nos. 12192252, 62022058, 12074252, and 12004245)+2 种基金the Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX01ZX06)the Shanghai Rising-Star Program (No. 20QA1405400)the Yangyang Development Fund.
文摘Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus light through inhomogeneous media, which is vital for optical imaging, communication,therapy, etc. Wavefront shaping based on the scattering matrix (SM) is extremely useful in handling dynamicprocesses in the linear regime. However, the implementation of such a method for controlling light in nonlinearmedia is still a challenge and has been unexplored until now. We report a method to determine the SM ofnonlinear scattering media with second-order nonlinearity. We experimentally demonstrate its feasibility inwavefront control and realize focusing of nonlinear signals through strongly scattering quadratic media.Moreover, we show that statistical properties of this SM still follow the random matrix theory. The scattering-matrix approach of nonlinear scattering medium opens a path toward nonlinear signal recovery, nonlinearimaging, microscopic object tracking, and complex environment quantum information processing.