We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser.The central wavelength of the single-frequency fiber laser seed is 1 063.8 nm,with a linewidth narrower than 20 kHz a...We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser.The central wavelength of the single-frequency fiber laser seed is 1 063.8 nm,with a linewidth narrower than 20 kHz and output power of 120 mW.By using two-stage amplification,a single-frequency fiber laser with an output power of 122 W is obtained,and the optical-optical conversion efficiency is 72%.No significant amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) is observed.The output power can be further increased by launching more pump power.展开更多
We obtain the output of a 284 ps pulse duration without tail modulation based on stimulated Brillouin scattering(SBS) pulse compression pumped by an 8 ns-pulse-duration, 1064 nm-wavelength Q-switched Nd:YAG laser. ...We obtain the output of a 284 ps pulse duration without tail modulation based on stimulated Brillouin scattering(SBS) pulse compression pumped by an 8 ns-pulse-duration, 1064 nm-wavelength Q-switched Nd:YAG laser. To suppress the tail modulation in SBS pulse compression, proper attenuators, which can control the pump energy within a rational range, are added in a generator-amplifier setup. The experimental result shows that the effective energy conversion efficiency triples when the pump energy reaches 700 m J to 51%, compared with the conventional generator-amplifier setup.展开更多
利用 T 矩阵法研究光镊中微粒大小与入射光束波长相近时,光镊捕获效率与入射光束的阶数、微粒的折射率和尺寸大小的关系.对拉盖尔-高斯光束光镊和高斯光束光镊的轴向和横向捕获效率进行比较.计算结果表明:不同阶数的拉盖尔-高斯光...利用 T 矩阵法研究光镊中微粒大小与入射光束波长相近时,光镊捕获效率与入射光束的阶数、微粒的折射率和尺寸大小的关系.对拉盖尔-高斯光束光镊和高斯光束光镊的轴向和横向捕获效率进行比较.计算结果表明:不同阶数的拉盖尔-高斯光束对微粒捕获效率的影响不同,阶数不超过4的拉盖尔-高斯光束的捕获效率高;微粒半径增加时,拉盖尔-高斯光束的轴向捕获效率逐渐增大,且捕获域也增加,高斯光束的最大捕获效率基本保持不变但捕获域逐渐增大;微粒折射率增加时,拉盖尔-高斯光束和高斯光束的轴向和横向捕获效率均先增加后递减,捕获效率出现了一个峰值,微粒折射率约在1.39~1.69是稳定捕获的最佳数值.展开更多
Radiant syngas cooler (RSC) is the key heat recovery equipment in coal gasification system. The syngas from gasifier carries large amount of slags in which the mass fraction of fly ash less than 100 μm is about 20%. ...Radiant syngas cooler (RSC) is the key heat recovery equipment in coal gasification system. The syngas from gasifier carries large amount of slags in which the mass fraction of fly ash less than 100 μm is about 20%. Studying the optical properties of fly ash has high significance for the optimization of heat transfer calculation in RSC. A new experimental method was proposed to inversely calculate the radiative parameters of particles—“KBr transmittance-reflectance method”. By measuring the “directional-hemispherical” reflectance and transmittance of fly ash particles by FTIR under the wavelength range of 0.55 - 1.65 μm, using the four-flux model to solve the radiative transfer equation and combing with Mie theory, the absorption and scattering efficiency of 22.7 μm fly ash and optical constant (also known as complex refractive index, m = n + ik) of fly ash were inversely calculated. The results indicated that for fly ash with large size parameter, there was no obvious change of the absorption and scattering efficiency when the mass fraction of Fe2O3 was between 5.65% and 16.53%, which was well explained by Mie theory;The obtained optical constant was close to the results of KBr trans-mittance method.展开更多
Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle’s light-trapping efficiency lies on ...Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle’s light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm,the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%,light-trapping efficiencies are 15.5% and 32.3%,respectively,for 53and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.展开更多
Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-...Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-α at 4.9 keV), created by laser. In order to optimize the conversion efficiency enhancement on titanium foils, the experiment is conducted under a variety of laser-driven intensity conditions. The X-ray emission intensity at 4.7 keV is measured and compared with prediction. The experimental result demonstrates that the solid Ti target laser-produced plasma (LPP) source has X-ray emission at 4.7 keV, which are all generated from electronic transitions in Ti ions at pulse width of 2.1 ns or 30 ps, the crudely evaluated He-α X-ray intensity appears to slightly increase with laser intensity enhancement, and the pre- pulse effect increases the conversion efficiency of the He-α X-ray. In addition, a 90-μm-thick Ti foil as a filter is used to transmit He-α X-ray at near 4.7 keV, creating a quasi-monochromatic transmission and greatly reducing the lower- and higher-energy background.展开更多
Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion conce...Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion concept and realizes a DGI combustion mode using a newly designed DGI igniter.The igniter integrates a fuel injector and a spark plug to achieve minimum volume and easy installation.As the mixture preparation within the jet chamber is essential for the performance of the igniter,different jet chamber injection strategies were tested with varying excess air-fuel ratio ranging from 1.4 to 2.0.By addressing the dual injection strategy,the ignition delay and combustion duration were improved evidently.Compared with the single injection strategy,dual injection strategy improves the flexibility when preparing the mixture inside the jet chamber and therefore retains more fuel.The increased energy density of the jet chamber helps to generate more energetic jets under dual injection strategy,resulting in the improvement of ignition and combustion performance with lean burn.A higher thermal efficiency and a leaner limit of the engine are attained with dual injection than that with single injection.Dual injection exhibits its potential in reducing CO and THC emissions to an acceptable level with leaner mixture.Based on dual injection strategy,the maximum indicated thermal efficiency of 45%is achieved.展开更多
文摘We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser.The central wavelength of the single-frequency fiber laser seed is 1 063.8 nm,with a linewidth narrower than 20 kHz and output power of 120 mW.By using two-stage amplification,a single-frequency fiber laser with an output power of 122 W is obtained,and the optical-optical conversion efficiency is 72%.No significant amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) is observed.The output power can be further increased by launching more pump power.
基金supported by the National Natural Science Foundation of China(Nos.61378007 and61138005)the Fundamental Research Funds for the Central Universities(No.HIT.IBRSEM.A.201409)
文摘We obtain the output of a 284 ps pulse duration without tail modulation based on stimulated Brillouin scattering(SBS) pulse compression pumped by an 8 ns-pulse-duration, 1064 nm-wavelength Q-switched Nd:YAG laser. To suppress the tail modulation in SBS pulse compression, proper attenuators, which can control the pump energy within a rational range, are added in a generator-amplifier setup. The experimental result shows that the effective energy conversion efficiency triples when the pump energy reaches 700 m J to 51%, compared with the conventional generator-amplifier setup.
文摘利用 T 矩阵法研究光镊中微粒大小与入射光束波长相近时,光镊捕获效率与入射光束的阶数、微粒的折射率和尺寸大小的关系.对拉盖尔-高斯光束光镊和高斯光束光镊的轴向和横向捕获效率进行比较.计算结果表明:不同阶数的拉盖尔-高斯光束对微粒捕获效率的影响不同,阶数不超过4的拉盖尔-高斯光束的捕获效率高;微粒半径增加时,拉盖尔-高斯光束的轴向捕获效率逐渐增大,且捕获域也增加,高斯光束的最大捕获效率基本保持不变但捕获域逐渐增大;微粒折射率增加时,拉盖尔-高斯光束和高斯光束的轴向和横向捕获效率均先增加后递减,捕获效率出现了一个峰值,微粒折射率约在1.39~1.69是稳定捕获的最佳数值.
文摘Radiant syngas cooler (RSC) is the key heat recovery equipment in coal gasification system. The syngas from gasifier carries large amount of slags in which the mass fraction of fly ash less than 100 μm is about 20%. Studying the optical properties of fly ash has high significance for the optimization of heat transfer calculation in RSC. A new experimental method was proposed to inversely calculate the radiative parameters of particles—“KBr transmittance-reflectance method”. By measuring the “directional-hemispherical” reflectance and transmittance of fly ash particles by FTIR under the wavelength range of 0.55 - 1.65 μm, using the four-flux model to solve the radiative transfer equation and combing with Mie theory, the absorption and scattering efficiency of 22.7 μm fly ash and optical constant (also known as complex refractive index, m = n + ik) of fly ash were inversely calculated. The results indicated that for fly ash with large size parameter, there was no obvious change of the absorption and scattering efficiency when the mass fraction of Fe2O3 was between 5.65% and 16.53%, which was well explained by Mie theory;The obtained optical constant was close to the results of KBr trans-mittance method.
基金supported by the Natural Science Foundation of Beijing (No.2102042)the National Natural Science Foundation of China (No.20876040)the Fundamental Research Funds for the Central Universities (No.10QG24)
文摘Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle’s light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm,the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%,light-trapping efficiencies are 15.5% and 32.3%,respectively,for 53and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.
基金supported by the National "863" Program of China under Grant No. 2006AA804312
文摘Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-α at 4.9 keV), created by laser. In order to optimize the conversion efficiency enhancement on titanium foils, the experiment is conducted under a variety of laser-driven intensity conditions. The X-ray emission intensity at 4.7 keV is measured and compared with prediction. The experimental result demonstrates that the solid Ti target laser-produced plasma (LPP) source has X-ray emission at 4.7 keV, which are all generated from electronic transitions in Ti ions at pulse width of 2.1 ns or 30 ps, the crudely evaluated He-α X-ray intensity appears to slightly increase with laser intensity enhancement, and the pre- pulse effect increases the conversion efficiency of the He-α X-ray. In addition, a 90-μm-thick Ti foil as a filter is used to transmit He-α X-ray at near 4.7 keV, creating a quasi-monochromatic transmission and greatly reducing the lower- and higher-energy background.
基金This work is supported by NSFC.91541206The assistance of Professor Guang Hong of the University of Technology Sydney with improving language is gratefully acknowledged.
文摘Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion concept and realizes a DGI combustion mode using a newly designed DGI igniter.The igniter integrates a fuel injector and a spark plug to achieve minimum volume and easy installation.As the mixture preparation within the jet chamber is essential for the performance of the igniter,different jet chamber injection strategies were tested with varying excess air-fuel ratio ranging from 1.4 to 2.0.By addressing the dual injection strategy,the ignition delay and combustion duration were improved evidently.Compared with the single injection strategy,dual injection strategy improves the flexibility when preparing the mixture inside the jet chamber and therefore retains more fuel.The increased energy density of the jet chamber helps to generate more energetic jets under dual injection strategy,resulting in the improvement of ignition and combustion performance with lean burn.A higher thermal efficiency and a leaner limit of the engine are attained with dual injection than that with single injection.Dual injection exhibits its potential in reducing CO and THC emissions to an acceptable level with leaner mixture.Based on dual injection strategy,the maximum indicated thermal efficiency of 45%is achieved.