In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new inte...In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective catalysis, molecular recognition, self-assembly, and host-guest supramolecular chemistry.展开更多
基金Financial support from the National Natural Science Foundation of China (Grant Nos. 20473097 and 20573116)the National Key Project for Basic Research (Grant Nos. 2007CB936503 and 2007CB936802)
文摘In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective catalysis, molecular recognition, self-assembly, and host-guest supramolecular chemistry.