The dynamic gain of a few-mode erbium-doped fiber amplifier(FM-EDFA)is vital for the long-haul mode division multiplexing(MDM)transmission.Here,we investigate the mode-dependent dynamic gain of an FM-EDFA under variou...The dynamic gain of a few-mode erbium-doped fiber amplifier(FM-EDFA)is vital for the long-haul mode division multiplexing(MDM)transmission.Here,we investigate the mode-dependent dynamic gain of an FM-EDFA under various manipulations of the pump mode.First,we numerically calculate the gain variation with respect to the input signal power,where a modedependent saturation input power occurs under different pump modes.Even under the fixed intensity profile of the pump laser,the saturation input power of each spatial mode is different.Moreover,high-order mode pumping leads to a compression of the linear amplification region,even though it is beneficial for the mitigation of the differential modal gain(DMG)arising in all guided modes.Then,we develop an all-fiber 3-mode EDFA,where the fundamental mode of the pump laser can be efficiently converted to the LP_(11)mode using the all-fiber mode-selective coupler(MSC).In comparison with the traditional LP_(01)pumping scheme,the DMG at 1550 nm can be mitigated from 1.61 dB to 0.97 dB under the LP_(11)mode pumping,while both an average gain of 19.93 dB and a DMG of less than 1 dB can be achieved from 1530 nm to 1560 nm.However,the corresponding signal input saturation powers are reduced by 0.3 dB for the LP_(01)mode and 1.6 dB for the LP_(11)mode,respectively.Both theoretical and experimental results indicate that a trade-off occurs between the DMG mitigation and the extension of the linear amplification range when the intensity profile of pump laser is manipulated.展开更多
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined...When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.展开更多
Modern eco-friendly industries such as renewable energy systems,electric vehicles(EVs),and light-emitting diodes(LEDs)have led to technological advancements in power electronics.Switching-based power converters have l...Modern eco-friendly industries such as renewable energy systems,electric vehicles(EVs),and light-emitting diodes(LEDs)have led to technological advancements in power electronics.Switching-based power converters have limited working ranges and can cause significant harmonics and oscillations in the output voltage and current.Introducing variable inductors can help solve this problem by changing the inductance without resorting to extreme switch duty cycles.Despite their advantages,there is still a lack of comprehensive reviews of variable inductor applications in power converter design.A thorough and in-depth review of variable inductance control in power conversion is presented,including its significance,working principle,core structure,modeling method,and typical applications.Traditionally,an inductor works in its linear magnetic region;its inductance in a power converter is considered constant,and the converter operates under fixed working conditions.However,a broad range of working conditions is required for power converters in practical applications.This is typically realized by changing the duty cycles of the switches.The working principle of variable inductance is reviewed,and the application of variable inductance control in power converters is presented,which will further help power electronics researchers and engineers design flexible and resilient power converters.展开更多
基金supported by the National Key R&D Program of China(No.2018YFB1800903)the National Natural Science Foundation of China(No.U22A2087)+1 种基金the Guangdong Introducing Innovative and Entrepreneurial Teams of the Pearl River Talent Recruitment Program(No.2021ZT09X044)the Guangdong Provincial Key Laboratory of Photonics Information Technology(No.2020B121201011)。
文摘The dynamic gain of a few-mode erbium-doped fiber amplifier(FM-EDFA)is vital for the long-haul mode division multiplexing(MDM)transmission.Here,we investigate the mode-dependent dynamic gain of an FM-EDFA under various manipulations of the pump mode.First,we numerically calculate the gain variation with respect to the input signal power,where a modedependent saturation input power occurs under different pump modes.Even under the fixed intensity profile of the pump laser,the saturation input power of each spatial mode is different.Moreover,high-order mode pumping leads to a compression of the linear amplification region,even though it is beneficial for the mitigation of the differential modal gain(DMG)arising in all guided modes.Then,we develop an all-fiber 3-mode EDFA,where the fundamental mode of the pump laser can be efficiently converted to the LP_(11)mode using the all-fiber mode-selective coupler(MSC).In comparison with the traditional LP_(01)pumping scheme,the DMG at 1550 nm can be mitigated from 1.61 dB to 0.97 dB under the LP_(11)mode pumping,while both an average gain of 19.93 dB and a DMG of less than 1 dB can be achieved from 1530 nm to 1560 nm.However,the corresponding signal input saturation powers are reduced by 0.3 dB for the LP_(01)mode and 1.6 dB for the LP_(11)mode,respectively.Both theoretical and experimental results indicate that a trade-off occurs between the DMG mitigation and the extension of the linear amplification range when the intensity profile of pump laser is manipulated.
基金supported in part by the National Key Research and Development Program of China(No.2020YFF0305800)State Grid Science Technology Project(No.520201210025)。
文摘When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.
基金Supported by Natural Science Foundation for Distinguished Young Scholars of Guangdong Province under No.2022B1515020002。
文摘Modern eco-friendly industries such as renewable energy systems,electric vehicles(EVs),and light-emitting diodes(LEDs)have led to technological advancements in power electronics.Switching-based power converters have limited working ranges and can cause significant harmonics and oscillations in the output voltage and current.Introducing variable inductors can help solve this problem by changing the inductance without resorting to extreme switch duty cycles.Despite their advantages,there is still a lack of comprehensive reviews of variable inductor applications in power converter design.A thorough and in-depth review of variable inductance control in power conversion is presented,including its significance,working principle,core structure,modeling method,and typical applications.Traditionally,an inductor works in its linear magnetic region;its inductance in a power converter is considered constant,and the converter operates under fixed working conditions.However,a broad range of working conditions is required for power converters in practical applications.This is typically realized by changing the duty cycles of the switches.The working principle of variable inductance is reviewed,and the application of variable inductance control in power converters is presented,which will further help power electronics researchers and engineers design flexible and resilient power converters.