期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的灰色神经网络预测方法 被引量:11
1
作者 许同乐 王营博 +1 位作者 孟祥川 宋汝君 《北京邮电大学学报》 EI CAS CSCD 北大核心 2018年第6期52-57,64,共7页
针对GM(1,1)算法求解发展系数和灰色作用量时受背景值影响的问题,提出一种回避背景值的辨识参数求解方法,避开背景值试算选取的步骤或选取不当造成预测精度低的问题;针对GM(1,1)模型预测时初始条件为固定值影响预测精度的问题,提出一种... 针对GM(1,1)算法求解发展系数和灰色作用量时受背景值影响的问题,提出一种回避背景值的辨识参数求解方法,避开背景值试算选取的步骤或选取不当造成预测精度低的问题;针对GM(1,1)模型预测时初始条件为固定值影响预测精度的问题,提出一种构建变权初始值的方法,避免预测精度受固定初始值的影响;针对传统灰色神经网络样本类型单一的问题,提出一种新的组合预测模型结构,突破了传统模型只依靠单一浸润线历史数据预测的局限,建立了基于改进灰色神经网络的浸润线预测模型.通过工程验证,该模型短期内对浸润线高度的变化预测效果较好. 展开更多
关键词 浸润线预测 灰色神经网络 欧拉公式 组合预测模型
原文传递
基于1DCNN-LSTM尾矿坝浸润线预测
2
作者 杨玉好 杨斌 +2 位作者 胡军 董文宇 金实 《有色金属工程》 CAS 北大核心 2024年第7期138-146,共9页
准确预测浸润线位置变化对尾矿坝的稳定性和安全性至关重要,为充分挖掘浸润线数据提供的空间特征和时序信息,提出将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合方法预测浸润线。以辽宁省齐大山风水沟尾矿库主坝为例,使用... 准确预测浸润线位置变化对尾矿坝的稳定性和安全性至关重要,为充分挖掘浸润线数据提供的空间特征和时序信息,提出将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合方法预测浸润线。以辽宁省齐大山风水沟尾矿库主坝为例,使用历史浸润线、库水位、坝体内外部位移、干滩长度5个主要因素作为模型输入数据,预测未来1 d和未来3 d的浸润线位置。将1DCNN-LSTM模型与经典的LSTM和反向传播神经网络(BP)进行对比研究。结果表明,1DCNN-LSTM浸润线预测的决定系数(R^(2))均在0.9以上,未来1 d的浸润线预测误差均值绝对值为0.004 m,最大误差绝对值为0.06 m,未来3 d的浸润线预测误差均值绝对值为0.003 m,最大误差绝对值为0.065 m,优于经典模型。这为短期浸润线预测提供一定的参考依据。 展开更多
关键词 1DCNN网络 LSTM网络 浸润线 尾矿坝 预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部