Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission ...Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission power, communications capability can also be enhanced via incorporating more data in every unit of transmission. Model Based Transmission Reduction (MBTR) increases the mission utility of spacecraft via sending higher-level messages which rely on preshared (or, in some cases, co-transmitted) data. Because of this a priori knowledge, the amount of information contained in a MBTR message significantly exceeds the amount the amount of information in a conventional message. MBTR has multiple levels of operation;the lowest, Model Based Data Transmission (MBDT), utilizes a pre-shared lower-resolution data frame, which is augmented in areas of significant discrepancy with data from the higher-resolution source. MBDT is examined, in detail, herein and several approaches to minimizing the required bandwidth for conveying data required to conform to a minimum level of accuracy are considered. Also considered are ways of minimizing transmission requirements when both a model and change data required to attain a desired minimum discrepancy threshold must be transmitted. These possible solutions are compared to alternate transmission techniques including several forms of image compression.展开更多
文摘Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission power, communications capability can also be enhanced via incorporating more data in every unit of transmission. Model Based Transmission Reduction (MBTR) increases the mission utility of spacecraft via sending higher-level messages which rely on preshared (or, in some cases, co-transmitted) data. Because of this a priori knowledge, the amount of information contained in a MBTR message significantly exceeds the amount the amount of information in a conventional message. MBTR has multiple levels of operation;the lowest, Model Based Data Transmission (MBDT), utilizes a pre-shared lower-resolution data frame, which is augmented in areas of significant discrepancy with data from the higher-resolution source. MBDT is examined, in detail, herein and several approaches to minimizing the required bandwidth for conveying data required to conform to a minimum level of accuracy are considered. Also considered are ways of minimizing transmission requirements when both a model and change data required to attain a desired minimum discrepancy threshold must be transmitted. These possible solutions are compared to alternate transmission techniques including several forms of image compression.