目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,...目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成。方法采用提出的色彩恢复子网(sand dust color correction,SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理。本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集。结果对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像。进一步的对比实验表明,该方法能取得优于对比方法的增强图像。结论本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像。展开更多
沙尘天气下,入射光线的散射和吸收,会导致图像退化,出现色彩偏移、细节丢失等问题,户外计算机视觉系统的工作性能受到严重影响。为此,提出了一个端到端的基于多尺度信息交互(multi-scale information interaction,MSII)的网络结构。该...沙尘天气下,入射光线的散射和吸收,会导致图像退化,出现色彩偏移、细节丢失等问题,户外计算机视觉系统的工作性能受到严重影响。为此,提出了一个端到端的基于多尺度信息交互(multi-scale information interaction,MSII)的网络结构。该网络采用并行的两个不同分辨率子网,通过上下采样使两个子网信息交互,引入交叉注意力机制进行空间、特征融合,以获得更丰富的细节;提出了一个简单有效的沙尘合成方法,并以此构建了一个配对沙尘数据集。实验可得,与所比较方法中最好的结果相比,在合成数据上,结构相似度提高5.94%,峰值信噪比提高0.403 dB;在真实数据上,自然图像质量指标提高0.4407,对比度、标准差、信息熵分别提高1.5315、1.0152、0.3352。由此可知,所提方法可获得细节清晰且色彩鲜明的图像。展开更多
文摘目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成。方法采用提出的色彩恢复子网(sand dust color correction,SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理。本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集。结果对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像。进一步的对比实验表明,该方法能取得优于对比方法的增强图像。结论本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像。
文摘沙尘天气下,入射光线的散射和吸收,会导致图像退化,出现色彩偏移、细节丢失等问题,户外计算机视觉系统的工作性能受到严重影响。为此,提出了一个端到端的基于多尺度信息交互(multi-scale information interaction,MSII)的网络结构。该网络采用并行的两个不同分辨率子网,通过上下采样使两个子网信息交互,引入交叉注意力机制进行空间、特征融合,以获得更丰富的细节;提出了一个简单有效的沙尘合成方法,并以此构建了一个配对沙尘数据集。实验可得,与所比较方法中最好的结果相比,在合成数据上,结构相似度提高5.94%,峰值信噪比提高0.403 dB;在真实数据上,自然图像质量指标提高0.4407,对比度、标准差、信息熵分别提高1.5315、1.0152、0.3352。由此可知,所提方法可获得细节清晰且色彩鲜明的图像。