针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提...针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.展开更多
文摘针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.