期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
显著性引导的目标互补隐藏弱监督语义分割
1
作者 白雪飞 卢立彬 王文剑 《中国图象图形学报》 CSCD 北大核心 2024年第4期1041-1055,共15页
目的 图像级弱监督语义分割方法利用类别标签训练分割网络,可显著降低标注成本。现有方法大多采用类激活图定位目标物体,然而传统类激活图只能挖掘出物体中最具辨识性的区域,直接将其作为伪标签训练的分割网络精度较差。本文提出一种显... 目的 图像级弱监督语义分割方法利用类别标签训练分割网络,可显著降低标注成本。现有方法大多采用类激活图定位目标物体,然而传统类激活图只能挖掘出物体中最具辨识性的区域,直接将其作为伪标签训练的分割网络精度较差。本文提出一种显著性引导的弱监督语义分割算法,可在获取更完整类激活图的基础上提高分割模型的性能。方法 首先通过显著图对目标进行互补随机隐藏,以获得互补图像对,然后融合互补图像对的类激活图作为监督,提高网络获取完整类激活图的能力。其次引入双重注意力修正模块,利用全局信息修正类激活图并生成伪标签训练分割网络。最后使用标签迭代精调策略,结合分割网络的初始预测、类激活图以及显著图生成更精确的伪标签,迭代训练分割网络。结果 在PASCAL VOC 2012(pattern analysis,statistical modeling and computational learning visual object classes 2012)数据集上进行类激活图生成实验与语义分割实验,所生成的类激活图更加完整,平均交并比有10.21%的提升。语义分割结果均优于对比方法,平均交并比提升6.9%。此外在COCO 2014(common object in context 2014)数据集上进行了多目标的语义分割实验,平均交并比提升0.5%。结论 该算法可获得更完整的类激活图,缓解了弱监督语义分割中监督信息不足的问题,提升了弱监督语义分割模型的精度。 展开更多
关键词 深度学习 弱监督语义分割 显著性引导 类激活图(CAM) 注意力机制
原文传递
基于显著导向的可见光与红外图像融合算法 被引量:5
2
作者 唐中剑 毛春 《太赫兹科学与电子信息学报》 2021年第1期125-131,共7页
为了克服当前较多可见光与红外图像融合方法主要利用图像能量特征来融合图层内容,忽略了图像的显著信息,导致融合图像中存在对比度较低等不足,本文以图像的显著信息为导向来融合可见光与红外图像。首先,借助L0和L1范数来设计平滑变换,... 为了克服当前较多可见光与红外图像融合方法主要利用图像能量特征来融合图层内容,忽略了图像的显著信息,导致融合图像中存在对比度较低等不足,本文以图像的显著信息为导向来融合可见光与红外图像。首先,借助L0和L1范数来设计平滑变换,对可见光与红外图像进行分解,获取边缘等特征保持较好的基础层和细节层。然后,利用频率调谐(FT)方法,获取红外图像中的显著信息,并以此为依据,建立基础层的融合模型,获取融合基础层图像。通过图像的信息熵特征,构建细节层的融合准则,从不同细节层图像的信息关联性出发,获取融合细节层图像。通过对融合细节层和融合基础层图像进行求和操作,输出融合图像。最后,在TNO数据集上进行了测试,结果显示,与当前技术相比,本文算法拥有更高的融合效果,可以更好地凸显目标信息与保持纹理细节。 展开更多
关键词 图像融合 平滑变换 显著导向 细节层 基础层 信息关联性 信息熵
下载PDF
深度导向显著性检测算法 被引量:2
3
作者 赵恒 安维胜 付为刚 《计算机应用》 CSCD 北大核心 2019年第1期143-147,共5页
针对目前基于深度卷积神经网络的显著性检测算法存在对复杂场景图像目标检测不完整、背景噪声多的问题,提出一种深度特征导向显著性检测算法。该算法是基于现有底层特征与深度卷积特征融合模型(ELD)的改进,网络模型包含基础特征提取、... 针对目前基于深度卷积神经网络的显著性检测算法存在对复杂场景图像目标检测不完整、背景噪声多的问题,提出一种深度特征导向显著性检测算法。该算法是基于现有底层特征与深度卷积特征融合模型(ELD)的改进,网络模型包含基础特征提取、高层语义特征跨层级引导传递两个部分。首先,根据不同层级卷积特征的差异性,构建跨层级特征联合的高层语义特征引导模型;然后,用改进的网络模型生成初始显著图,利用高层语义特征引导的方式进行显著性聚类传播;最后,用完全联系条件随机场对聚类传播的结果进行优化,使其能够获取更多结构边缘信息和降低噪声并生成完整显著图。在ECSSD上和DUT-ORMON两个数据集上进行实验测试,实验结果表明,所提算法的准确率和召回率(PR)优于ELD模型,其F-measure(F)值分别提升了7. 5%和11%,平均绝对误差(MAE)值分别降低了16%和15%,说明了所提算法模型能够在目标识别、模式识别、图像索引等复杂图像场景应用领域得到更加鲁棒的结果。 展开更多
关键词 显著性检测 深度特征 神经网络 特征引导 显著图
下载PDF
结合红外显著性目标导引的改进YOLO网络的智能装备目标识别研究 被引量:2
4
作者 侯毅苇 李林汉 王彦 《红外技术》 CSCD 北大核心 2020年第7期644-650,共7页
为了提升实际作战环境下目标检测识别的性能,本文提出了一种基于红外显著性目标导引的改进YOLO(You Only Look Once)网络的智能装备目标识别算法,该算法利用红外图像提供目标可能的位置引导可见光图像中的深度自主学习,提升检测与识别... 为了提升实际作战环境下目标检测识别的性能,本文提出了一种基于红外显著性目标导引的改进YOLO(You Only Look Once)网络的智能装备目标识别算法,该算法利用红外图像提供目标可能的位置引导可见光图像中的深度自主学习,提升检测与识别的实时性。改进YOLO-V3识别网络是以Darknet-53为基础网络架构,利用DenseNet代替具有较低分辨率的原始转移层,同时采用分类网络预训练、多尺度检测网络训练等措施增强特征传播,复用和融合的性能。仿真实验结果表明,本文提出的模型可以有效地提高现有目标检测与识别的性能。 展开更多
关键词 目标识别 红外显著性 目标导引 深度学习 YOLO-V3 智能装备
下载PDF
采用特征引导机制的显著性检测网络 被引量:2
5
作者 左保川 张晴 《计算机工程与应用》 CSCD 北大核心 2021年第14期201-208,共8页
近年来,基于全卷积网络的显著性物体检测方法较手工选取特征的方法已经取得了较大的进展,但针对复杂场景图像的检测仍存在一些问题需要解决。提出了一种新的基于全局特征引导的显著性物体检测模型,研究深层语义特征在多尺度多层次特征... 近年来,基于全卷积网络的显著性物体检测方法较手工选取特征的方法已经取得了较大的进展,但针对复杂场景图像的检测仍存在一些问题需要解决。提出了一种新的基于全局特征引导的显著性物体检测模型,研究深层语义特征在多尺度多层次特征表达中的重要作用。以特征金字塔网络的编解码结构为基础,在自底而上的路径中,设计了全局特征生成模块(GGM),准确提取显著性物体的位置信息;构建了加强上下文联系的残差模块(RM),提取各侧边输出的多尺度特征;采用特征引导流(GF)融合全局特征生成模块和残差模块,利用深层语义特征去引导浅层特征提取,高亮显著目标的同时抑制背景噪声。实验结果表明,在5个基准数据集上与11种主流方法相比,该模型具有优越性。 展开更多
关键词 显著性检测 全卷积网络 特征引导 多尺度和多层次特征 残差结构
下载PDF
结合边缘特征先验引导的深度卷积显著性检测 被引量:4
6
作者 时斐斐 张松龙 彭力 《计算机工程与应用》 CSCD 北大核心 2020年第14期199-206,共8页
针对当前基于深度学习的显著性检测算法缺少利用先验特征和边缘信息,且在复杂场景中难以检测出鲁棒性强的显著性区域的问题,提出了一种结合边缘特征,利用先验信息引导的全卷积神经网络显著性检测算法。该算法利用三种被经常用到的先验... 针对当前基于深度学习的显著性检测算法缺少利用先验特征和边缘信息,且在复杂场景中难以检测出鲁棒性强的显著性区域的问题,提出了一种结合边缘特征,利用先验信息引导的全卷积神经网络显著性检测算法。该算法利用三种被经常用到的先验知识结合边缘信息形成先验图,通过注意力机制将提取的先验特征与深度特征有效融合,最终通过提出的循环卷积反馈优化策略迭代地学习改进显著性区域,从而产生更可靠的最终显著图预测。经过实验定性定量分析,对比证明了算法的可靠性。 展开更多
关键词 显著性检测 全卷积网络 先验信息引导 循环卷积优化
下载PDF
基于多模态遥感影像的边缘感知引导显著性检测
7
作者 连远锋 石旭 江澄 《太赫兹科学与电子信息学报》 2023年第3期360-370,共11页
针对多模态遥感影像显著性检测鲁棒性差和检测精确度不佳等问题,提出一种基于多模态边缘感知引导的显著性检测方法,该方法主要由多模态遥感影像显著检测主干网络、跨模态特征共享模块和边缘感知引导网络构成。通过在特征提取主干网络中... 针对多模态遥感影像显著性检测鲁棒性差和检测精确度不佳等问题,提出一种基于多模态边缘感知引导的显著性检测方法,该方法主要由多模态遥感影像显著检测主干网络、跨模态特征共享模块和边缘感知引导网络构成。通过在特征提取主干网络中加入跨模态特征共享模块,使得不同模态间特征通过共享交互实现协同增强,并且抑制具有缺陷的特征信息。基于边缘感知引导网络,通过边缘图监督模块来检测边缘特征的有效性,从而生成准确边界。在3种显著目标检测遥感图像数据集上进行实验,平均的F_(β)、平均绝对误差(MAE)、S_(m)分数分别为0.9176,0.0095和0.9199。实验结果表明,提出的多模态边缘感知引导网络(MEGNet)适用于在多模态场景中进行显著性检测。 展开更多
关键词 多模态遥感图像 显著性检测 边缘感知引导网络 双线性特征融合
下载PDF
基于多尺度特征融合的RGB-D显著性检测
8
作者 孔德冕 吴谨 《微电子学与计算机》 2021年第12期17-23,共7页
深度图的引入为RGB显著性检测提供了丰富的位置线索,但低质量的深度图会错误引导模型的特征拟合,并且由于真实世界的显著物体尺度变化较大,会使网络在预测过程中更加困难,误差变大.为了解决上述问题,本文设计了一种新的基于深度学习的RG... 深度图的引入为RGB显著性检测提供了丰富的位置线索,但低质量的深度图会错误引导模型的特征拟合,并且由于真实世界的显著物体尺度变化较大,会使网络在预测过程中更加困难,误差变大.为了解决上述问题,本文设计了一种新的基于深度学习的RGB-D显著性检测模型.本文利用VGG19作为主干网络分别提取RGB图和深度图两个模态的特征;然后利用串行的自适应融合模块对提取到的特征进行跨模态融合,使RGB图和深度图的优势互补,自动筛选深度特征;接着利用联合边缘检测的多尺度特征聚合模块将跨模态融合后的特征与边缘信息融合;最后通过全局引导模块对模型进行全局特征引导,得到预测结果.利用本文方法对4个公开数据集上的图像进行了预测。并与6种不同的方法进行对比,本文方法预测结果更接近人工标定的真值图.PR(Precision-Recal)曲线、S(S-measure)指标、F(F-measure)指标和MAE(Mean Absolute Error)指标显示,本文方法的整体性能较其中6种方法高. 展开更多
关键词 RGB-D显著性检测 深度学习 自适应融合 全局引导 多尺度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部