Mathematic model for thermal performance of heat pipe heat exchanger based on the heat transfer model was presented.The infinite volume model was used to calculate the overall thermal performance and the temperature f...Mathematic model for thermal performance of heat pipe heat exchanger based on the heat transfer model was presented.The infinite volume model was used to calculate the overall thermal performance and the temperature field of heat pipe heat exchanger. The calculation results essentially coincided with the results of an engineering case and provided the theoretical base for engineering application.展开更多
采用"熔融吸附-模压成型"的方法制备了膨胀石墨(EG)为多孔基体、硬脂酸(SA)为相变材料的EG/SA定形相变储能复合材料,通过微观形貌、热物性和热稳定性测试,分析了膨胀石墨的膨胀度对EG/SA定形相变储能复合材料的热性能影响规律...采用"熔融吸附-模压成型"的方法制备了膨胀石墨(EG)为多孔基体、硬脂酸(SA)为相变材料的EG/SA定形相变储能复合材料,通过微观形貌、热物性和热稳定性测试,分析了膨胀石墨的膨胀度对EG/SA定形相变储能复合材料的热性能影响规律,并通过加热/冷却实验对不同参数的定形相变储能复合材料的储/放热性能进行了分析比较.研究表明采用高膨胀度EG更有利于提高SA在EG多孔基体中的分布均匀性和储能复合材料的热导率,当EG质量分数为20%时其径向导热系数最高达19.6 W m^(-1)K^(-1),相比纯SA提高了110倍;EG的高膨胀度对SA相变过程中的液相封装具有明显的改善作用,高膨胀度EG为基体的定形相变储能复合材料具有很好的热稳定性;EG/SA定形相变储能复合材料的储/放热时间约为纯相变材料的1/8~1/4,具有高导热、无泄漏等优点.展开更多
文摘Mathematic model for thermal performance of heat pipe heat exchanger based on the heat transfer model was presented.The infinite volume model was used to calculate the overall thermal performance and the temperature field of heat pipe heat exchanger. The calculation results essentially coincided with the results of an engineering case and provided the theoretical base for engineering application.
文摘采用"熔融吸附-模压成型"的方法制备了膨胀石墨(EG)为多孔基体、硬脂酸(SA)为相变材料的EG/SA定形相变储能复合材料,通过微观形貌、热物性和热稳定性测试,分析了膨胀石墨的膨胀度对EG/SA定形相变储能复合材料的热性能影响规律,并通过加热/冷却实验对不同参数的定形相变储能复合材料的储/放热性能进行了分析比较.研究表明采用高膨胀度EG更有利于提高SA在EG多孔基体中的分布均匀性和储能复合材料的热导率,当EG质量分数为20%时其径向导热系数最高达19.6 W m^(-1)K^(-1),相比纯SA提高了110倍;EG的高膨胀度对SA相变过程中的液相封装具有明显的改善作用,高膨胀度EG为基体的定形相变储能复合材料具有很好的热稳定性;EG/SA定形相变储能复合材料的储/放热时间约为纯相变材料的1/8~1/4,具有高导热、无泄漏等优点.