期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于径流特性分解的月径流集成预测模型研究
1
作者 万锦 马彪 刘为锋 《水电能源科学》 北大核心 2024年第5期29-33,共5页
揭示混沌径流序列中的规律特性可使预测径流的可解释性、精度大幅提升。针对中长期径流序列的周期性、趋势性特征,收集洪泽湖流域吴家渡站1959~2019年实测月径流资料,提取径流周期成分和趋势成分,依据各成分的径流特性,选取契合物理特... 揭示混沌径流序列中的规律特性可使预测径流的可解释性、精度大幅提升。针对中长期径流序列的周期性、趋势性特征,收集洪泽湖流域吴家渡站1959~2019年实测月径流资料,提取径流周期成分和趋势成分,依据各成分的径流特性,选取契合物理特性规律的极限梯度下降(XGBoost)预测模型进行趋势成分预测,选择善于捕捉混沌规律的长短期记忆神经网络(LSTM)进行残差成分预测,构建了一种基于径流特性分解的XGBoost-LSTM集成预测模型,采用该模型对洪泽湖流域吴家渡站月径流序列进行预测,并将预测结果与XGBoost、LSTM、随机森林、BP等单一预测模型进行比较。结果表明,基于特性成分提取的XGBoost-LSTM集成模型的预测精度高于单一径流预测模型,能够利用径流序列规律特性,充分发掘预测模型优势,有效提升径流预测精度。 展开更多
关键词 径流特性分解 梯度提升树 长短期记忆人工神经网络 集成模型 中长期径流预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部