The fractal characteristics of drainage in the ten kongduis of the upper Yellow River were obtained using the box counting dimension, and the evolution stages of the watershed topography were defined by different rang...The fractal characteristics of drainage in the ten kongduis of the upper Yellow River were obtained using the box counting dimension, and the evolution stages of the watershed topography were defined by different ranges of the fractal dimensions of river networks(D_g). The results show that the fractal scaleless range of the Maobula River is 20–370 m based on a combination of artificial judgment, correlation coefficient test and fitting error. Other kongduis show good fractal characteristics in this fractal scaleless range as well. The box counting dimension can be used as a quantitative index of watershed topography fractal characteristics. The fractal dimension of stream networks is independent of the threshold contributing area used for extracting the drainage networks from the DEM. The values of D_g in the upper ten kongduis are in the range of 1.08-1.14. Both the runoff yield and the sediment yield are positively and linearly related with D_g. The positive relation between the sediment yield and D_g reflects the effect of landform features on sediment yield in the young and/or mature stages of landform evolution of the study area. By revising the critical value of D_g, the value of D_g of the basin in the young evolution stage is less than 1.06, while it is more than 1.06 for the basin in mature or old evolution stage. The upper ten kongduis are in the mature stage of landform evolution.展开更多
This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, a...This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal fiats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, large- scale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.展开更多
基金National Natural Science Foundation of China(41371036)
文摘The fractal characteristics of drainage in the ten kongduis of the upper Yellow River were obtained using the box counting dimension, and the evolution stages of the watershed topography were defined by different ranges of the fractal dimensions of river networks(D_g). The results show that the fractal scaleless range of the Maobula River is 20–370 m based on a combination of artificial judgment, correlation coefficient test and fitting error. Other kongduis show good fractal characteristics in this fractal scaleless range as well. The box counting dimension can be used as a quantitative index of watershed topography fractal characteristics. The fractal dimension of stream networks is independent of the threshold contributing area used for extracting the drainage networks from the DEM. The values of D_g in the upper ten kongduis are in the range of 1.08-1.14. Both the runoff yield and the sediment yield are positively and linearly related with D_g. The positive relation between the sediment yield and D_g reflects the effect of landform features on sediment yield in the young and/or mature stages of landform evolution of the study area. By revising the critical value of D_g, the value of D_g of the basin in the young evolution stage is less than 1.06, while it is more than 1.06 for the basin in mature or old evolution stage. The upper ten kongduis are in the mature stage of landform evolution.
文摘This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal fiats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, large- scale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.