Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuni...Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuniformity,anisotropy,and unhomogeneity,directional statistical measurement of JRC is the precondition for ensuring the reliability of the empirical estimation method.However,the directional statistical measurement of JRC is time-consuming.In order to present an ideal measurement method of JRC,new profilographs and roughness rulers were developed according to the properties of rock joint undulating shape based on the review of measurement methods of JRC.Operation methods of the profilographs and roughness rulers were also introduced.A case study shows that the instruments and operation methods produce an effective means for the statistical measurement of JRC.展开更多
The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been co...The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.展开更多
AIM:To measure in vitro diameter of imitational varices using a self-made endoscopic scale and confirm its accuracy and clinical feasibility.METHODS:A catheter was introduced into the endoscopeaccessory channel and at...AIM:To measure in vitro diameter of imitational varices using a self-made endoscopic scale and confirm its accuracy and clinical feasibility.METHODS:A catheter was introduced into the endoscopeaccessory channel and attached to a zebra wire guide that was used as a stylet.The wire guide was fixed onto the tip of the catheter by a soft and thin string.By gently advancing the stylet into the catheter,the width of the opening loop at the tip of the endoscope approximated the diameter of the imitational varices.Measurements performed in vitro using this self-made endoscopic ruler were compared to measurements of simulative varices.RESULTS:At the handle,the sleeve moving distance ranged from 5 to 14 mm.There was no obvious proportional relationship between the sleeve movement distance and endoscopic measurement ruler.The results indicated that the gap between the endoscopic measurement and actual measurement of the object size tended to close.The in vitro measurement of the diameter of the simulative varices showed that the two kinds of measuring methods were not significantly different with respect to their accuracy(P=0.8499).CONCLUSION:In vitro experiments confirmed that using a self-designed endoscopic ruler to measure the diameter of simulative varices was objective,accurate and feasible.展开更多
A three-dimensional mathematical model was established to investigate the behavior of molten steel flow and steel/slag interface with different processes and electromagnetic parameters under two different static magne...A three-dimensional mathematical model was established to investigate the behavior of molten steel flow and steel/slag interface with different processes and electromagnetic parameters under two different static magnetic field configurations [ruler-type electromagnetic brake (EMBr ruler) and vertical electromagnetic brake (V-EMBr)] in a continuous casting mold. The results showed that the brake effect of EMBr ruler is significantly influenced by its configuration parameters, the distance between the pole and bottom of the submerged entry nozzle (SEN), and the port angle of the SEN outlet; therefore, it is not helpful to depress the diffusion of jet flow along the thickness direction of mold. For a constant SEN depth and port angle, there is a reasonable pole position (P = 0 mm) where the pole simultaneously covers three key zones, i.e., the jet flow impact zone and the upward and downward backflow zones. For V-EMBr, the magnetic field can simultaneously cover the three key zones and depress the diffusion of jet flow along the casting and thickness directions of the mold. Both the meniscus height and the impact intensity of the jet flow can be obviously depressed by V-EMBr even if the SEN depth and port angle have changed in the continuous casting process.展开更多
In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the po...In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 40672186, 50809059)the Natural Science Foundation of Zhejiang Province (No.Y505008)
文摘Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuniformity,anisotropy,and unhomogeneity,directional statistical measurement of JRC is the precondition for ensuring the reliability of the empirical estimation method.However,the directional statistical measurement of JRC is time-consuming.In order to present an ideal measurement method of JRC,new profilographs and roughness rulers were developed according to the properties of rock joint undulating shape based on the review of measurement methods of JRC.Operation methods of the profilographs and roughness rulers were also introduced.A case study shows that the instruments and operation methods produce an effective means for the statistical measurement of JRC.
文摘The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.
基金Supported by Chinese Postdoctoral Science Foundation,Grant 2012T50868
文摘AIM:To measure in vitro diameter of imitational varices using a self-made endoscopic scale and confirm its accuracy and clinical feasibility.METHODS:A catheter was introduced into the endoscopeaccessory channel and attached to a zebra wire guide that was used as a stylet.The wire guide was fixed onto the tip of the catheter by a soft and thin string.By gently advancing the stylet into the catheter,the width of the opening loop at the tip of the endoscope approximated the diameter of the imitational varices.Measurements performed in vitro using this self-made endoscopic ruler were compared to measurements of simulative varices.RESULTS:At the handle,the sleeve moving distance ranged from 5 to 14 mm.There was no obvious proportional relationship between the sleeve movement distance and endoscopic measurement ruler.The results indicated that the gap between the endoscopic measurement and actual measurement of the object size tended to close.The in vitro measurement of the diameter of the simulative varices showed that the two kinds of measuring methods were not significantly different with respect to their accuracy(P=0.8499).CONCLUSION:In vitro experiments confirmed that using a self-designed endoscopic ruler to measure the diameter of simulative varices was objective,accurate and feasible.
基金This work was financially supported by the National Natural Science Foundation of China (No. 51574083) and the Program of Introducing Talents of Discipline to Universities (The 111 Project of China, No. B07015). The authors would also like to thank the referees for their work which has contributed to this paper.
文摘A three-dimensional mathematical model was established to investigate the behavior of molten steel flow and steel/slag interface with different processes and electromagnetic parameters under two different static magnetic field configurations [ruler-type electromagnetic brake (EMBr ruler) and vertical electromagnetic brake (V-EMBr)] in a continuous casting mold. The results showed that the brake effect of EMBr ruler is significantly influenced by its configuration parameters, the distance between the pole and bottom of the submerged entry nozzle (SEN), and the port angle of the SEN outlet; therefore, it is not helpful to depress the diffusion of jet flow along the thickness direction of mold. For a constant SEN depth and port angle, there is a reasonable pole position (P = 0 mm) where the pole simultaneously covers three key zones, i.e., the jet flow impact zone and the upward and downward backflow zones. For V-EMBr, the magnetic field can simultaneously cover the three key zones and depress the diffusion of jet flow along the casting and thickness directions of the mold. Both the meniscus height and the impact intensity of the jet flow can be obviously depressed by V-EMBr even if the SEN depth and port angle have changed in the continuous casting process.
文摘In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.