The mathematical model based on the Volume-Averaged/Reynolds-Averaged Navier Stokes (VARANS) equations has been adopted in recent years to generally simulate the interaction between waves and porous structures. Howeve...The mathematical model based on the Volume-Averaged/Reynolds-Averaged Navier Stokes (VARANS) equations has been adopted in recent years to generally simulate the interaction between waves and porous structures. However, it is still hard to determine the two experimental coefficients (α and β) included in VARANS equations. In the present study, VARANS equation is adopted to describe the flow inside and outside the porous structures uniformly, with applying the volume averaged k ε model to simulate the turbulence effect. A new calibration method is used to evaluate the accuracy of numerical simulation of wave motion on porous seabed with different coefficients, by taking the wave damping rate as an index. The calibration is achieved by completing a simulation matrix on two calibration cases. A region can be found in the parameter space to produce a lower error, which means that the simulation results are better consistent with the experimental results.展开更多
Experimental studies on the friction coefficient between concrete and the top surface of a rubble mound foundation in China are reviewed. Through comparison of different test results, the development of this research ...Experimental studies on the friction coefficient between concrete and the top surface of a rubble mound foundation in China are reviewed. Through comparison of different test results, the development of this research is comprehensively analyzed. An experiment is carried out in the condition similar to prototype. The process curve of friction coefficient with the test block sliding is analyzed and a standard for determination of the friction coefficient is defined. The variation features of the friction coefficient are analyzed on the basis of the present experimental results and other studies in China. It is shown that the friction coefficient between concrete and the top surface of a rubble mound foundation decreases with the increase of the foundation pressure, and the friction coefficient for a very fine leveling bed is smaller than that for a fine leveling bed.展开更多
基金financially supported by the NSFC–Shandong Joint Fund Project(Grant No.U1706226)the National Natural Science Foundation of China(Grant No.51279027)
文摘The mathematical model based on the Volume-Averaged/Reynolds-Averaged Navier Stokes (VARANS) equations has been adopted in recent years to generally simulate the interaction between waves and porous structures. However, it is still hard to determine the two experimental coefficients (α and β) included in VARANS equations. In the present study, VARANS equation is adopted to describe the flow inside and outside the porous structures uniformly, with applying the volume averaged k ε model to simulate the turbulence effect. A new calibration method is used to evaluate the accuracy of numerical simulation of wave motion on porous seabed with different coefficients, by taking the wave damping rate as an index. The calibration is achieved by completing a simulation matrix on two calibration cases. A region can be found in the parameter space to produce a lower error, which means that the simulation results are better consistent with the experimental results.
文摘Experimental studies on the friction coefficient between concrete and the top surface of a rubble mound foundation in China are reviewed. Through comparison of different test results, the development of this research is comprehensively analyzed. An experiment is carried out in the condition similar to prototype. The process curve of friction coefficient with the test block sliding is analyzed and a standard for determination of the friction coefficient is defined. The variation features of the friction coefficient are analyzed on the basis of the present experimental results and other studies in China. It is shown that the friction coefficient between concrete and the top surface of a rubble mound foundation decreases with the increase of the foundation pressure, and the friction coefficient for a very fine leveling bed is smaller than that for a fine leveling bed.