The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon mat...The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated. The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM), respectively whereas the mechanical behaviour was examined by 3- point bending experiments. Exclusively one type of experimental resole type phenolic resin was applied. A strong fibre/matrix bonding, which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength, brittle failure and a very low utilisation of the fibres strain to failure in C/C composites. Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure. Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged. Toughness is almost not affected. In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure, strength, stiffness and toughness. Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour. Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.展开更多
Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminatin...Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminating the roving frame. Total 3 types of yarn with the various linear density of 8 Ne, 10 Ne & 12 Ne were produced using a roving frame and without using a roving frame. In the next step, physical and mechanical properties of those yarns including unevenness, imperfections, hairiness & tenacity were investigated. The result showed that ring spun cotton yarns produced from sliver exhibited inferior physical and mechanical properties compared with samples from the conventional ring spinning system.展开更多
文摘The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated. The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM), respectively whereas the mechanical behaviour was examined by 3- point bending experiments. Exclusively one type of experimental resole type phenolic resin was applied. A strong fibre/matrix bonding, which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength, brittle failure and a very low utilisation of the fibres strain to failure in C/C composites. Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure. Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged. Toughness is almost not affected. In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure, strength, stiffness and toughness. Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour. Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.
文摘Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminating the roving frame. Total 3 types of yarn with the various linear density of 8 Ne, 10 Ne & 12 Ne were produced using a roving frame and without using a roving frame. In the next step, physical and mechanical properties of those yarns including unevenness, imperfections, hairiness & tenacity were investigated. The result showed that ring spun cotton yarns produced from sliver exhibited inferior physical and mechanical properties compared with samples from the conventional ring spinning system.