In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective nois...In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective noise,i.e.,collective-dephasing noise and collective-rotation noise,where each logical qubit is composed of two physical qubits and free from noise.In each of the two proposed protocols,the secret messages are encoded on the initial logical qubits via two composite unitary operations.Moreover,the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding,making the two proposed protocols easier to implement.The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart.Consequently,the information leakage problem is avoided in the two proposed protocols.Moreover,the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome,such as the Trojan horse attack,the intercept-resend attack,the measure-resend attack,the entangle-measure attack and the correlation-elicitation(CE)attack.展开更多
In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very ...In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time.A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.展开更多
In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.T...In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.展开更多
In this review we investigate the rotation effect in the motion of coupled dimer in a two-dimensional asymmetric periodic potential. Free rotation does not generate directed transport in translational direction, while...In this review we investigate the rotation effect in the motion of coupled dimer in a two-dimensional asymmetric periodic potential. Free rotation does not generate directed transport in translational direction, while we find it plays an critical role in the motors motility when the dimer moves under the effect of asymmetry ratchet potential. In the presence of external force, we study the relation between the average current and the force numerically and theoretically. The numerical results show that only appropriate driving force could produce nonzero current and there are current transitions when the force is large enough. An analysis of stability analysis of limit cycles is applied to explain the occurrence of these transitions. Moreover, we numerically simulate the transport of this coupled dimer driven by the random fluctuations in the rotational direction. The existence of noise smooths the current transitions induced by the driving force and the resonance-like peaks which depend on the rod length emerge in small noise strength. Thanks to the noise in the rotational direction, autonomous motion emerges without the external force and large noise could make the current reversal happen. Eventually, the new mechanism to generate directed transport by the rotation is studied.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which c...Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which can be realized with unitary success probability when collective noise is taken into account.The protocols canalso be generalized to transmit multi-photon state or to realize quantum communication in collective noise channel.展开更多
Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis t...Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11375152 and 61402407)the Natural Science Foundation of Zhejiang Province(Grant No.LQ12F02012)
文摘In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective noise,i.e.,collective-dephasing noise and collective-rotation noise,where each logical qubit is composed of two physical qubits and free from noise.In each of the two proposed protocols,the secret messages are encoded on the initial logical qubits via two composite unitary operations.Moreover,the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding,making the two proposed protocols easier to implement.The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart.Consequently,the information leakage problem is avoided in the two proposed protocols.Moreover,the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome,such as the Trojan horse attack,the intercept-resend attack,the measure-resend attack,the entangle-measure attack and the correlation-elicitation(CE)attack.
文摘In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time.A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.
基金supported by the National Natural Science Foundation of China(Grant Nos.61402407 and 11375152)
文摘In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.
基金We thank Peter Hanggi for valuable dis- cussions. This work has been financially supported by grants from the National Natural Science Foundation of China (Grant No. 11075016) and the Foundation for Doctoral Training from Min- istry of Education (Grant No. 20100003110007).
文摘In this review we investigate the rotation effect in the motion of coupled dimer in a two-dimensional asymmetric periodic potential. Free rotation does not generate directed transport in translational direction, while we find it plays an critical role in the motors motility when the dimer moves under the effect of asymmetry ratchet potential. In the presence of external force, we study the relation between the average current and the force numerically and theoretically. The numerical results show that only appropriate driving force could produce nonzero current and there are current transitions when the force is large enough. An analysis of stability analysis of limit cycles is applied to explain the occurrence of these transitions. Moreover, we numerically simulate the transport of this coupled dimer driven by the random fluctuations in the rotational direction. The existence of noise smooths the current transitions induced by the driving force and the resonance-like peaks which depend on the rod length emerge in small noise strength. Thanks to the noise in the rotational direction, autonomous motion emerges without the external force and large noise could make the current reversal happen. Eventually, the new mechanism to generate directed transport by the rotation is studied.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Supported by the National Natural Science Foundation of China under Grant No.10704011the Research Project of the Education Department of Liaoning Province of China under Grant No.2008006
文摘Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which can be realized with unitary success probability when collective noise is taken into account.The protocols canalso be generalized to transmit multi-photon state or to realize quantum communication in collective noise channel.
文摘Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.