The unsteady inner flow structure of a single-stage axial flow compressor under the coexisting conditions of surge and rotating stall was experimentally investigated via detailed measurements of the unsteady character...The unsteady inner flow structure of a single-stage axial flow compressor under the coexisting conditions of surge and rotating stall was experimentally investigated via detailed measurements of the unsteady characteristics and the internal flow velocity fluctuations. The main relevant feature of the tested compressor is a shock tube with a capacity tank connected in series to the compressor outlet through slits and a concentric duplex pipe: surge and rotating stall can both be generated by connecting the shock tube. Research attention is focused on the unsteady behavior of a rotating stall during the surge cycle. The size of the rotating stall cell during the recovery process of an irregular surge cycle was experimentally determined by the circumferential flow velocity fluctuations ahead of the rotor blade. The results suggested that the size of the rotating stall cell at the switching point of the performance curve between large and small cycles is considered to be the key parameter in determining the following surge cycle. In addition, the surge cycle is largely influenced by the unsteady behavior of the rotating stall cell.展开更多
Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve suc...Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve such a polarization transfer,the I spin should either be spin-locked or be converted to the dipolar ordered state through adiabatic demagnetization in the rotating frame.In this work,we analyze the spin dynamics of the Hartmann-Hahn CP(HHCP)utilizing the 1 H spin-locking,and the dipolar-order CP(DOCP)having the 1 H adiabatic demagnetization.We further propose an adiabatic demagnetization CP(ADCP)where a constant radio-frequency pulse is applied on the S spin while 1 H is adiabatically demagnetized.Our analyses indicate that ADCP utilizes the adiabatic passage to effectively achieve the polarization transfer from the 1 H to S spins.In addition,the dipolar ordered state generated during the 1 H demagnetization process could also be converted into the observable S polarization through DOCP,further enhancing the polarized signals.It is shown by both static and magic-angle-spinning(MAS)NMR experiments that ADCP has dramatically broadened the CP matching condition over the other CP schemes.Various samples have been used to demonstrate the polarization transfer efficiency of this newly proposed ADCP scheme.展开更多
文摘The unsteady inner flow structure of a single-stage axial flow compressor under the coexisting conditions of surge and rotating stall was experimentally investigated via detailed measurements of the unsteady characteristics and the internal flow velocity fluctuations. The main relevant feature of the tested compressor is a shock tube with a capacity tank connected in series to the compressor outlet through slits and a concentric duplex pipe: surge and rotating stall can both be generated by connecting the shock tube. Research attention is focused on the unsteady behavior of a rotating stall during the surge cycle. The size of the rotating stall cell during the recovery process of an irregular surge cycle was experimentally determined by the circumferential flow velocity fluctuations ahead of the rotor blade. The results suggested that the size of the rotating stall cell at the switching point of the performance curve between large and small cycles is considered to be the key parameter in determining the following surge cycle. In addition, the surge cycle is largely influenced by the unsteady behavior of the rotating stall cell.
基金supported by the NSF Cooperative Agreement DMR-1644779the State of Florida.X.H.P.acknowledges the supports from the National Key R&D Program of China(Grants No.2018YFA0306600)+1 种基金the National Science Foundation of China(Grants No.11927811,12150014)Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000).
文摘Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve such a polarization transfer,the I spin should either be spin-locked or be converted to the dipolar ordered state through adiabatic demagnetization in the rotating frame.In this work,we analyze the spin dynamics of the Hartmann-Hahn CP(HHCP)utilizing the 1 H spin-locking,and the dipolar-order CP(DOCP)having the 1 H adiabatic demagnetization.We further propose an adiabatic demagnetization CP(ADCP)where a constant radio-frequency pulse is applied on the S spin while 1 H is adiabatically demagnetized.Our analyses indicate that ADCP utilizes the adiabatic passage to effectively achieve the polarization transfer from the 1 H to S spins.In addition,the dipolar ordered state generated during the 1 H demagnetization process could also be converted into the observable S polarization through DOCP,further enhancing the polarized signals.It is shown by both static and magic-angle-spinning(MAS)NMR experiments that ADCP has dramatically broadened the CP matching condition over the other CP schemes.Various samples have been used to demonstrate the polarization transfer efficiency of this newly proposed ADCP scheme.