The paper presents an overview of heat pipes, especially those used in different space missions. Historical perspectives, principles of operations, types of heat pipes are discussed. Several factors have contributed t...The paper presents an overview of heat pipes, especially those used in different space missions. Historical perspectives, principles of operations, types of heat pipes are discussed. Several factors have contributed to the science and technology of the present state-of-Art heat pipe leading to the development of loop heat pipes, micro and miniature heat pipes and micro loop heat pipes. The paper highlights the advancement of heat pipe for hypersonic cruise vehicles, loop heat pipes with higher conductance in 10 K range, heat pipe switches for temperature control of the spacecraft electronics.展开更多
The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order w...The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order was obtained for a small curvature ratio, κ. The variations of axial velocity distribution and secondary flow structure with F, Re and We were discussed in detail in order to investigate the combined effects of the three parameters on flow structure. The combined effects of the Coriolis force, inertia force and elastic force on the temperature distribution were also analyzed, which are greater than the adding independent effects of the three forces. The variations of the flow rate and Nusselt number with the rotation, inertia and elasticity were examined as well. The results show the characteristics of the heat and mass transfer of the Oldroyd-B fluids in a rotating curved pipe.展开更多
This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameter...This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameters for the condenser section of RHP-GW.Different fin height(f=0-7 mm),rotational Reynolds number(Rer=1602-6408)and jet Reynolds number(Rej=42379-108302)were analyzed under input heat flux of 4000 W/m2.A fully developed flow was imposed at the outlet of the nozzles.Results showed that the optimal heat transfer rate was obtained for fin height of 5 mm,which improved the average Nusselt number by 84%compared to the structure without fins.A critical Rej for each Rer that the impinging jet can reach the condenser section was found.The critical Rej value increases with Rer,which is in the range from 42379 to 61215 and 61215 to 80050 for Rer=6408 and Rer=9610,respectively.展开更多
提出了一种旋转热管形式的反应釜装置,旋转热管搅拌桨起到了搅拌和传热的作用,能够取代传统反应釜中的换热元件和搅拌装置。通过对旋转热管反应釜的传热性能测试,考察了反应釜内温度、旋转速度、冷却水流速以及热管充液量对热管传输功...提出了一种旋转热管形式的反应釜装置,旋转热管搅拌桨起到了搅拌和传热的作用,能够取代传统反应釜中的换热元件和搅拌装置。通过对旋转热管反应釜的传热性能测试,考察了反应釜内温度、旋转速度、冷却水流速以及热管充液量对热管传输功率、总热阻、总传热系数的影响。结果表明,采用旋转热管能够有效的移除反应热,反应温度为85℃,转速为200 r/min的条件下传热功率能达到1 k W。转速对旋转热管的传热性能有较大影响,反应温度为75℃时,静止热管的热阻为0.082℃/W,转速为150 r/min时热阻则降为0.048℃/W,传热能力显著提升。此外充液量较小时热管热阻对转速的变化更敏感,随反应温度的提升会大幅降低。展开更多
文摘The paper presents an overview of heat pipes, especially those used in different space missions. Historical perspectives, principles of operations, types of heat pipes are discussed. Several factors have contributed to the science and technology of the present state-of-Art heat pipe leading to the development of loop heat pipes, micro and miniature heat pipes and micro loop heat pipes. The paper highlights the advancement of heat pipe for hypersonic cruise vehicles, loop heat pipes with higher conductance in 10 K range, heat pipe switches for temperature control of the spacecraft electronics.
基金the National Natural Science Foundation of China(Grant No. 10272096).
文摘The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order was obtained for a small curvature ratio, κ. The variations of axial velocity distribution and secondary flow structure with F, Re and We were discussed in detail in order to investigate the combined effects of the three parameters on flow structure. The combined effects of the Coriolis force, inertia force and elastic force on the temperature distribution were also analyzed, which are greater than the adding independent effects of the three forces. The variations of the flow rate and Nusselt number with the rotation, inertia and elasticity were examined as well. The results show the characteristics of the heat and mass transfer of the Oldroyd-B fluids in a rotating curved pipe.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20190752)the National Natural Science Foundation of China(Grant No.51905275)+2 种基金the Natural Science Foundation of Colleges and Universities in Jiangsu Province(Grant No.19KJB460020)the Faculty Research Funding of Nanjing Forestry University(Grant No.163040111)the Open Foundation of Jiangsu Wind Power Generation Engineering and Technology Center(No.Zk19-03-12).
文摘This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameters for the condenser section of RHP-GW.Different fin height(f=0-7 mm),rotational Reynolds number(Rer=1602-6408)and jet Reynolds number(Rej=42379-108302)were analyzed under input heat flux of 4000 W/m2.A fully developed flow was imposed at the outlet of the nozzles.Results showed that the optimal heat transfer rate was obtained for fin height of 5 mm,which improved the average Nusselt number by 84%compared to the structure without fins.A critical Rej for each Rer that the impinging jet can reach the condenser section was found.The critical Rej value increases with Rer,which is in the range from 42379 to 61215 and 61215 to 80050 for Rer=6408 and Rer=9610,respectively.
文摘提出了一种旋转热管形式的反应釜装置,旋转热管搅拌桨起到了搅拌和传热的作用,能够取代传统反应釜中的换热元件和搅拌装置。通过对旋转热管反应釜的传热性能测试,考察了反应釜内温度、旋转速度、冷却水流速以及热管充液量对热管传输功率、总热阻、总传热系数的影响。结果表明,采用旋转热管能够有效的移除反应热,反应温度为85℃,转速为200 r/min的条件下传热功率能达到1 k W。转速对旋转热管的传热性能有较大影响,反应温度为75℃时,静止热管的热阻为0.082℃/W,转速为150 r/min时热阻则降为0.048℃/W,传热能力显著提升。此外充液量较小时热管热阻对转速的变化更敏感,随反应温度的提升会大幅降低。