This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechani...This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechanisms of inhibition damage caused by continuous cultivation of apple tree.20 mL of solution containing different concentrations of cinnamon acid was added into container with the tested seedlings.After treatment,the samples were taken periodically and the respiratory rates were measured by OXY-LAB oxygen electrodes under 25°C stable temperature and then the activities of related enzymes were measured.The rates of total respiration and other 2 pathways [tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP)] appeared initially an increasing treads and late (on the 3rd d) began to decline.However,they again appeared an increase trend at the end period,on the contrast,the respiratory rate of embden-meyer- hot-parnas (EMP) pathway appeared a stead decline tread but it had a recover on the last day.The respiratory rate of total and 3 pathways were decreased under 125 mg kg-1 (soil).The dynamic trends of the enzymes activities of pyrophosphate-dependent phosphofructokinase (PFK),glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) showed similarly.In conclusion,treatments of certain concentration of cinnamon acid would inhibit the respiratory rate and related enzymes activity of roots of M.hupehensis Rehd.And the inhibition degrees were positively related with concentration of cinnamon acid treatments.展开更多
The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 ...The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.展开更多
基金suppoted by the Project of 948 from Ministry of Agriculture of China (2006-G28)the Non-profit Research Foundation from Ministry of Agriculture of China (nyhyzx07-024)+1 种基金the Ear Marked Fund for Modern Agro-Industry Technology Research System, Chinathe Key Innovation Project for Agricultural Application Technology of Shandong Province, China.
文摘This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechanisms of inhibition damage caused by continuous cultivation of apple tree.20 mL of solution containing different concentrations of cinnamon acid was added into container with the tested seedlings.After treatment,the samples were taken periodically and the respiratory rates were measured by OXY-LAB oxygen electrodes under 25°C stable temperature and then the activities of related enzymes were measured.The rates of total respiration and other 2 pathways [tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP)] appeared initially an increasing treads and late (on the 3rd d) began to decline.However,they again appeared an increase trend at the end period,on the contrast,the respiratory rate of embden-meyer- hot-parnas (EMP) pathway appeared a stead decline tread but it had a recover on the last day.The respiratory rate of total and 3 pathways were decreased under 125 mg kg-1 (soil).The dynamic trends of the enzymes activities of pyrophosphate-dependent phosphofructokinase (PFK),glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) showed similarly.In conclusion,treatments of certain concentration of cinnamon acid would inhibit the respiratory rate and related enzymes activity of roots of M.hupehensis Rehd.And the inhibition degrees were positively related with concentration of cinnamon acid treatments.
基金Supported by the Key Technology Program of the Xinjiang Uygur Autonomous Region, China (No.200733144-1)the Knowledge Innovation Project of the Chinese of Academy of Sciences (No.KSCX2-YW-N-41)
文摘The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.