The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle...The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle oil-gas reservoir in this area. The key for analyzing sandstone reservoir and sedimentary facies is by using seismic attributes(amplitude) to establish the relationship between lithology combination and seismic attributes. The lower unit of Late Miocene Minghuazhen Formation at the BZ34 block in the Huanghekou Sag was subdivided into 10 parasequence sets(PSS). Thicker sandstones mainly occurred in PSS1 and PSS10, whereas thin sandstones are mostly observed within other parasequence sets. This study presents statistics and analyses of lithology, i.e., statistics of root-meansquare(RMS) amplitude and lithology of well locations in different parasequence sets of the study area,as well as 1-D forward seismic models of 7 types of lithology combinations, the establishment of a spatial distribution of 2-D sandbody, forward seismic models etc. Our study indicates that high amplitude peaks correspond to thicker sandbodies, while low amplitude indicates non-development of sandbodies(generally less than 2 m), and medium amplitude agrees well with large sets of mudstones interbedded with medium and thinner sandstones. Different sand-mudstone combinations genetically reflect a combination of multiple micro-facies, therefore, amplitude features can predict sandbodies as well as facies characteristics.展开更多
Based on the difference of wave impedance between sand layer and surrounding rock, the seismic wave numerical simulation software, Tesseral-2D is used to establish the sandstone formation model containing water, oil a...Based on the difference of wave impedance between sand layer and surrounding rock, the seismic wave numerical simulation software, Tesseral-2D is used to establish the sandstone formation model containing water, oil and gas respectively, and the three models are treated by post-stack time offset under the conditions of defined channel spacing, wavelet frequency and wave velocity of different rock mass, and the root means square amplitude difference attribute profile under the condition of water-filled oil-filled and gas-filled oil-filled is obtained. From this, it can be obtained that after oil-gas substitution occurs in weak non-mean reservoirs, the root-mean-square amplitude difference from the reservoir to the lower part of the reservoir experiences a mutation process from a positive maximum to a negative maximum, while after oil-water substitution, the root-mean-square amplitude difference from the reservoir to the lower part of the reservoir experiences a mutation process from zero to a positive maximum. For a strong heterogeneous reservoir. Therefore, for Weak inhomogeneous media similar to tight sandstone, the root-mean-square amplitude difference attribute can be used to detect the distribution of fluid in the actual gas drive or water drive oil recovery process.展开更多
基金funded by the National Science and Technology Major Project(Exploration Technologies for Offshore Hidden Oil/Gas)(Project No.:2016ZX05024003-003)
文摘The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle oil-gas reservoir in this area. The key for analyzing sandstone reservoir and sedimentary facies is by using seismic attributes(amplitude) to establish the relationship between lithology combination and seismic attributes. The lower unit of Late Miocene Minghuazhen Formation at the BZ34 block in the Huanghekou Sag was subdivided into 10 parasequence sets(PSS). Thicker sandstones mainly occurred in PSS1 and PSS10, whereas thin sandstones are mostly observed within other parasequence sets. This study presents statistics and analyses of lithology, i.e., statistics of root-meansquare(RMS) amplitude and lithology of well locations in different parasequence sets of the study area,as well as 1-D forward seismic models of 7 types of lithology combinations, the establishment of a spatial distribution of 2-D sandbody, forward seismic models etc. Our study indicates that high amplitude peaks correspond to thicker sandbodies, while low amplitude indicates non-development of sandbodies(generally less than 2 m), and medium amplitude agrees well with large sets of mudstones interbedded with medium and thinner sandstones. Different sand-mudstone combinations genetically reflect a combination of multiple micro-facies, therefore, amplitude features can predict sandbodies as well as facies characteristics.
文摘Based on the difference of wave impedance between sand layer and surrounding rock, the seismic wave numerical simulation software, Tesseral-2D is used to establish the sandstone formation model containing water, oil and gas respectively, and the three models are treated by post-stack time offset under the conditions of defined channel spacing, wavelet frequency and wave velocity of different rock mass, and the root means square amplitude difference attribute profile under the condition of water-filled oil-filled and gas-filled oil-filled is obtained. From this, it can be obtained that after oil-gas substitution occurs in weak non-mean reservoirs, the root-mean-square amplitude difference from the reservoir to the lower part of the reservoir experiences a mutation process from a positive maximum to a negative maximum, while after oil-water substitution, the root-mean-square amplitude difference from the reservoir to the lower part of the reservoir experiences a mutation process from zero to a positive maximum. For a strong heterogeneous reservoir. Therefore, for Weak inhomogeneous media similar to tight sandstone, the root-mean-square amplitude difference attribute can be used to detect the distribution of fluid in the actual gas drive or water drive oil recovery process.