In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using...In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.展开更多
According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried...According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried out and a quality classification system of rock mass applied in coastal metal deposit was established. Secondly, the reasonable demarcation depth of cancelling ore pillars was simulated using the finite element method, and the simulation results show that the ore pillars can be cancelled below the level of-555 m. Thirdly, a novel layer-backfill mining method of room-pillar alternation was designed to reduce the disturbance and settlement of terrain in mining area. Engineering practice shows that the new mining method enhanced the mining output and relieved rock disturbance. Furthermore, the settlement of the roof strata was small and no disaster occurred. The new mining technology effectively controlled the deformation of the terrain, indicating that the mining of the large-scale gold coastal deposit in Sanshandao Gold Mine was achieved safely, efficiently, and with a low loss rate.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the in...To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.展开更多
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation met...The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.展开更多
The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made...The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.展开更多
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov...Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.展开更多
For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by ...For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.展开更多
This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and ap...This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and applicability of the developing methodology are assessed through benchmarking with a more direct and accurate 3D numerical model. This analysis utilizes an underground lignite mine which is being developed in soft rock environment. Through the decisions made for the optimum room and pillar layout, the design process highlights the strong points and the weaknesses of 2D finite element analysis, and provides useful recommendations for future reference. The interpretations of results demonstrate that 2D approximation techniques come near quite well to the actual 3D problem.However, external load approximation technique seems to fit even better with the respective outcomes from the 3D analyses.展开更多
Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal...Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal conditions when they are encountered7 To help answer these questions, and to determine some of the relevant factors influencing the conditions of room and pillar (R & P) retreat min- ing entries, four consecutive R & P retreat panels were evaluated. This evaluation was intended to rein- force the influence of topographic changes, depth of cover, multiple-seam interactions, geological conditions, and mining geometry. This paper details observations were made in four consecutive R & P retreat panels and the data were collected from an instrumentation site during retreat mining. The pri- mary focus was on the differences observed among the four panels and within the panels themselves. The instrumentation study was initially planned to evaluate the interactions between primary and secondary support, but produced rather interesting results relating to the loading encountered under the current mining conditions. In addition to the obse^ation and |ll^trumentation, numerical modeling was per- formed to evaluate the stress condi~!ons. Both the LaModel 3.0 and Rocscience Phase 2 programs were used to evaluate these four panels, The results of both models indicated a drastic reduction in the vertical stresses experienced in these panels due to the full extraction mining in overlying seams when compared to the full overburden load. Both models showed a higher level of stress associated with the outside entries of the panels. These results agree quite well with the observations and instrumentation studies performed at the mine. These efforts provided two overarching conclusions concerning R & P retreat mine planning and execution. The first was that there are four areas that should not be overlooked during R & P retreat mining: topographic relief, multiple^seaPa stress relief, stress concentra展开更多
基金financially supported by the Major State Fundamental Research Project of China(Nos.2011CB201201and2010CB226802)the National Natural Science Foundation of China(No.51204113)the Youth Science and Technology Fund of Sichuan Province(No.2012JQ0031)
文摘In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.
基金Projects(2013BAB02B03,2012BAB08B00)supported by the National Science and Technology Support Program of ChinaProject(51074177)supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group CorporationProjects(51274254,51322403)supported by the National Natural Science Foundation of China
文摘According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried out and a quality classification system of rock mass applied in coastal metal deposit was established. Secondly, the reasonable demarcation depth of cancelling ore pillars was simulated using the finite element method, and the simulation results show that the ore pillars can be cancelled below the level of-555 m. Thirdly, a novel layer-backfill mining method of room-pillar alternation was designed to reduce the disturbance and settlement of terrain in mining area. Engineering practice shows that the new mining method enhanced the mining output and relieved rock disturbance. Furthermore, the settlement of the roof strata was small and no disaster occurred. The new mining technology effectively controlled the deformation of the terrain, indicating that the mining of the large-scale gold coastal deposit in Sanshandao Gold Mine was achieved safely, efficiently, and with a low loss rate.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
基金supported by the National Natural Science Foundation for Youth(No.51304200)the China Postdoctoral Science Foundation Project(No.2013M540477)+1 种基金the Superior Subject Construction Project of Universities in Jiangsu Province,the Independent Research Project of State Key Laboratory of Coal Resources and Mine Safety(No.SKLCRSM11X02)the National Natural Science Foundation of China(No.51074163)
文摘To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.
文摘The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.
基金Projects(11972378,41630642)supported by the National Natural Science Foundation of China。
文摘The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.
文摘Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.
文摘For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.
文摘This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and applicability of the developing methodology are assessed through benchmarking with a more direct and accurate 3D numerical model. This analysis utilizes an underground lignite mine which is being developed in soft rock environment. Through the decisions made for the optimum room and pillar layout, the design process highlights the strong points and the weaknesses of 2D finite element analysis, and provides useful recommendations for future reference. The interpretations of results demonstrate that 2D approximation techniques come near quite well to the actual 3D problem.However, external load approximation technique seems to fit even better with the respective outcomes from the 3D analyses.
文摘Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal conditions when they are encountered7 To help answer these questions, and to determine some of the relevant factors influencing the conditions of room and pillar (R & P) retreat min- ing entries, four consecutive R & P retreat panels were evaluated. This evaluation was intended to rein- force the influence of topographic changes, depth of cover, multiple-seam interactions, geological conditions, and mining geometry. This paper details observations were made in four consecutive R & P retreat panels and the data were collected from an instrumentation site during retreat mining. The pri- mary focus was on the differences observed among the four panels and within the panels themselves. The instrumentation study was initially planned to evaluate the interactions between primary and secondary support, but produced rather interesting results relating to the loading encountered under the current mining conditions. In addition to the obse^ation and |ll^trumentation, numerical modeling was per- formed to evaluate the stress condi~!ons. Both the LaModel 3.0 and Rocscience Phase 2 programs were used to evaluate these four panels, The results of both models indicated a drastic reduction in the vertical stresses experienced in these panels due to the full extraction mining in overlying seams when compared to the full overburden load. Both models showed a higher level of stress associated with the outside entries of the panels. These results agree quite well with the observations and instrumentation studies performed at the mine. These efforts provided two overarching conclusions concerning R & P retreat mine planning and execution. The first was that there are four areas that should not be overlooked during R & P retreat mining: topographic relief, multiple^seaPa stress relief, stress concentra