Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed t...Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.展开更多
基金National Key R&D Program of China(Grant No.2020YFB1600303)National Natural Science Foundation of China(Grant Nos.U1964203,52072215)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956).
文摘Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.
文摘通过线控转向(Steer-by-Wire,SBW)系统控制汽车方向盘转角提高某汽车在极限行驶中抗侧翻能力.建立SBW整车模型,基于紧急避让、紧急掉头和蛇行运动等3种危险操纵稳定性工况分析,得出该车易侧翻的结论.提出基于横向载荷转移率(Lateral Load Transfer Ratio,LTR)的车辆动态防侧翻控制算法,通过SIMULINK与Car Sim的联合仿真平台,建立转向优化控制模型.仿真结果表明在典型工况下该车防侧翻性能得到明显改善.