为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering,FCM)进行故障识别。对同一负荷下的已知故障信号进行变分模态分解,利用奇异值分解技术进一...为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering,FCM)进行故障识别。对同一负荷下的已知故障信号进行变分模态分解,利用奇异值分解技术进一步提取各模态特征,通过FCM形成标准聚类中心,采用海明贴近度对测试样本进行分类,并通过计算分类系数和平均模糊熵对分类性能进行评价,将该方法应用于滚动轴承变负荷故障诊断。通过与基于经验模态分解的特征提取方法对比,该方法对标准FCM初始化条件不敏感,在同负荷故障诊断中表现出更好的分类性能;变负荷故障诊断时,除外圈故障特征线发生明显迁移,其他测试样本故障特征线仍在原聚类中心附近,整体故障识别率保持在100%,因此,该方法能精确、稳定提取故障特征,为实际滚动轴承智能故障诊断提供参考。展开更多
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法...局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。展开更多
文摘为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering,FCM)进行故障识别。对同一负荷下的已知故障信号进行变分模态分解,利用奇异值分解技术进一步提取各模态特征,通过FCM形成标准聚类中心,采用海明贴近度对测试样本进行分类,并通过计算分类系数和平均模糊熵对分类性能进行评价,将该方法应用于滚动轴承变负荷故障诊断。通过与基于经验模态分解的特征提取方法对比,该方法对标准FCM初始化条件不敏感,在同负荷故障诊断中表现出更好的分类性能;变负荷故障诊断时,除外圈故障特征线发生明显迁移,其他测试样本故障特征线仍在原聚类中心附近,整体故障识别率保持在100%,因此,该方法能精确、稳定提取故障特征,为实际滚动轴承智能故障诊断提供参考。
文摘局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。