The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation...The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances.展开更多
The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projecti...The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projectiles over the impact velocity range in practical applications was rarely explored.AUTODYN numerical code is used to investigate the influence of the component design upon the penetration performance of non-ideal segmented-rod projectiles over a wide range of impact velocities,which can be used to guide the optimal design of weaponry segmented-rod projectiles.展开更多
The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod ...The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod projectile(LRP),the multiphase structure at micro-scale of WHEA is the key effects on self-sharpening penetration process.In order to describe the distinctive penetration behavior,the interaction between micro phases is introduced to modify the hydrodynamic penetration model.The yield strengths of WHEA phases are determined based on the solid solution strengthening methods.Combined with the elbow-streamline model,the self-sharpening mechanism is revealed in view of the multi-phase flow dynamics and the flow field in the deformation area of the LRP nose is characterized to depict the shear layer evolution and the shape of the LRP’s nose as well as the determination of the penetration channel.The self-sharpening coefficient considering the reduction of nose radius is proposed and introduced into the penetration model to calculate the depth of penetration and the penetration channel.Results show that the multi-phase interaction at the microscopic level contributes to the inhomogeneous distribution of the WHEA phases.The shear layer evolution separates part of the LRP material from the nose and makes the nose radius decrease more quickly.It is also the reason that WHEA LRPs have a pointed nose compared with the mushroom nose of WHA heavy alloy(WHA)LRPs.The calculated results agree well with the corresponding experimental data of WHA and WHEA LRPs penetrating into semi-infinite medium carbon steel targets with elevated impact velocities.展开更多
The performance of composite ceramic armor penetrated by rod projectile was studied by both numerical simulation and experiment.The penetration and damage mechanisms of the projectile-armor after high-speed collision ...The performance of composite ceramic armor penetrated by rod projectile was studied by both numerical simulation and experiment.The penetration and damage mechanisms of the projectile-armor after high-speed collision were also observed by high-speed photography.The experimental results showed that the ballistic performance of composite ceramic armor was highly affected by the density,hardness and toughness of bulletproof ceramic.The flow stress of the failed bulletproof ceramic is not only related to the pressure but also related to the strain rate.The phenomenological method based on Bodner-Partom ceramic model was introduced to derive the growth rate of damage.Numerical simulation results show good agreement with the experimental results.展开更多
基金the support received from the National Natural Science Foundation of China(No.11872121)。
文摘The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances.
文摘The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projectiles over the impact velocity range in practical applications was rarely explored.AUTODYN numerical code is used to investigate the influence of the component design upon the penetration performance of non-ideal segmented-rod projectiles over a wide range of impact velocities,which can be used to guide the optimal design of weaponry segmented-rod projectiles.
基金This work was supported by the National Natural Science Foundation of China(Grant 11790292)the NSAF Joint Fund(Grant U1730101).
文摘The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod projectile(LRP),the multiphase structure at micro-scale of WHEA is the key effects on self-sharpening penetration process.In order to describe the distinctive penetration behavior,the interaction between micro phases is introduced to modify the hydrodynamic penetration model.The yield strengths of WHEA phases are determined based on the solid solution strengthening methods.Combined with the elbow-streamline model,the self-sharpening mechanism is revealed in view of the multi-phase flow dynamics and the flow field in the deformation area of the LRP nose is characterized to depict the shear layer evolution and the shape of the LRP’s nose as well as the determination of the penetration channel.The self-sharpening coefficient considering the reduction of nose radius is proposed and introduced into the penetration model to calculate the depth of penetration and the penetration channel.Results show that the multi-phase interaction at the microscopic level contributes to the inhomogeneous distribution of the WHEA phases.The shear layer evolution separates part of the LRP material from the nose and makes the nose radius decrease more quickly.It is also the reason that WHEA LRPs have a pointed nose compared with the mushroom nose of WHA heavy alloy(WHA)LRPs.The calculated results agree well with the corresponding experimental data of WHA and WHEA LRPs penetrating into semi-infinite medium carbon steel targets with elevated impact velocities.
文摘The performance of composite ceramic armor penetrated by rod projectile was studied by both numerical simulation and experiment.The penetration and damage mechanisms of the projectile-armor after high-speed collision were also observed by high-speed photography.The experimental results showed that the ballistic performance of composite ceramic armor was highly affected by the density,hardness and toughness of bulletproof ceramic.The flow stress of the failed bulletproof ceramic is not only related to the pressure but also related to the strain rate.The phenomenological method based on Bodner-Partom ceramic model was introduced to derive the growth rate of damage.Numerical simulation results show good agreement with the experimental results.