The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relation...The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.展开更多
Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can ...Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can affect the energy storage, dissipation, and surplus in rock. To explore the influence of temperature on the energy storage and dissipation characteristics and rockburst proneness, the present study has carried out a range of the uniaxial compression(UC) and single-cyclic loading-unloading uniaxial compression(SCLUC) tests on pre-heated granite specimens at 20℃-700℃. The results demonstrate that the rockburst proneness of pre-heated granite initially increases and subsequently decreases with the increase of temperature. The temperature of 300℃ has been found to be the threshold for rockburst proneness. Meanwhile, it is found that the elastic strain energy density increases linearly with the total input strain energy density for the pre-heated granites, confirming that the linear energy property of granite has not been altered by temperature. According to this inherent property, the peak elastic strain energy of pre-heated granites can be calculated accurately. On this basis, utilising the residual elastic energy index, the rockburst proneness of pre-heated granite can be determined quantitatively. The obtained results from high to low are: 317.9 k J/m^(3)(300℃), 264.1 k J/m^(3)(100℃), 260.6 k J/m^(3)(20℃), 235.5 k J/m^(3)(500℃), 158.9 k J/m^(3)(700℃), which are consistent with the intensity of actual rockburst for specimens. In addition, the relationship between temperature and energy storage capacity(ESC) of granite was discussed, revealing that high temperature impairs ESC of rocks, which is essential for reducing the rockburst proneness. This study provides some new insights into the rockburst proneness evaluation in high-temperature rock engineering.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42077244 and 41877272)the Fundamental Research Funds for the Central Universities(Grant No.2242022k30054)。
文摘The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.
基金supported by the National Natural Science Foundation of China (Grant No. 41877272)the Fundamental Research Funds for the Central Universities (Grant No.2242022k30054)the Fundamental Research Funds for the Central Universities of Central South University (Grant No.2021zzts0861)。
文摘Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can affect the energy storage, dissipation, and surplus in rock. To explore the influence of temperature on the energy storage and dissipation characteristics and rockburst proneness, the present study has carried out a range of the uniaxial compression(UC) and single-cyclic loading-unloading uniaxial compression(SCLUC) tests on pre-heated granite specimens at 20℃-700℃. The results demonstrate that the rockburst proneness of pre-heated granite initially increases and subsequently decreases with the increase of temperature. The temperature of 300℃ has been found to be the threshold for rockburst proneness. Meanwhile, it is found that the elastic strain energy density increases linearly with the total input strain energy density for the pre-heated granites, confirming that the linear energy property of granite has not been altered by temperature. According to this inherent property, the peak elastic strain energy of pre-heated granites can be calculated accurately. On this basis, utilising the residual elastic energy index, the rockburst proneness of pre-heated granite can be determined quantitatively. The obtained results from high to low are: 317.9 k J/m^(3)(300℃), 264.1 k J/m^(3)(100℃), 260.6 k J/m^(3)(20℃), 235.5 k J/m^(3)(500℃), 158.9 k J/m^(3)(700℃), which are consistent with the intensity of actual rockburst for specimens. In addition, the relationship between temperature and energy storage capacity(ESC) of granite was discussed, revealing that high temperature impairs ESC of rocks, which is essential for reducing the rockburst proneness. This study provides some new insights into the rockburst proneness evaluation in high-temperature rock engineering.