The contact form of rock-concrete has a crucial influence on the failure characteristics of the stability of rock-concrete engineering.To study the influence of contact surface on the mechanical properties of rock-con...The contact form of rock-concrete has a crucial influence on the failure characteristics of the stability of rock-concrete engineering.To study the influence of contact surface on the mechanical properties of rock-concrete composite specimens under compressive loads,the two different contact forms of rock-concrete composite specimens are designed,the mechanical properties of these two different specimens are analyzed under triaxial compressive condition,and analysis comparison on the stress-strain curves and failure forms of the two specimens is carried out.The influence of contact surface constraint on the mechanical properties of rock-concrete composite specimens is obtained.Results show that the stress and strain of rock-concrete composite specimens with contact surface constraint are obviously higher than those without.Averagely,compared with composite specimens without the contact surface,the existence of contact surface constraint can increase the axial peak stress of composite specimens by 24%and the axial peak strain by 16%.According to the characteristics of the fracture surface,the theory of microcrack development is used to explain the contact surface constraint of rock-concrete composite specimens,which explains the difference of mechanical properties between the two rock-concrete composite specimens in the experiment.Research results cannot only enrich the research content of the mechanics of rock contact,but also can serve as a valuable reference for the understanding of the corresponding mechanics mechanism of other similar composite specimens.展开更多
基金This study was partially supported by the National Natural Science Foundation of China(Grant Nos.41302223,51908097)Science and Technology Plan Projects of Municipal Administration of State Land,Resources and Housing,Chongqing Municipal Government(No.KJ-2015047)+3 种基金Chongqing No.3 Colleges and Universities Youth Backbone Teachers Funding Plans and Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2016jcyjA0074,cstc2016jcyjA0933,cstc2015jcyjA90012,cstc2019jcyj-msxmX0258)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Nos.KJ1713327,KJ1600532)The Key Laboratory of Well Stability and Fluid&Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province,Xi'an Shiyou University(No.FRM 20190201002)Chongqing University of Science and Technology Graduate Student Science and Technology Innovation Program(No.YKJCX1720601).
文摘The contact form of rock-concrete has a crucial influence on the failure characteristics of the stability of rock-concrete engineering.To study the influence of contact surface on the mechanical properties of rock-concrete composite specimens under compressive loads,the two different contact forms of rock-concrete composite specimens are designed,the mechanical properties of these two different specimens are analyzed under triaxial compressive condition,and analysis comparison on the stress-strain curves and failure forms of the two specimens is carried out.The influence of contact surface constraint on the mechanical properties of rock-concrete composite specimens is obtained.Results show that the stress and strain of rock-concrete composite specimens with contact surface constraint are obviously higher than those without.Averagely,compared with composite specimens without the contact surface,the existence of contact surface constraint can increase the axial peak stress of composite specimens by 24%and the axial peak strain by 16%.According to the characteristics of the fracture surface,the theory of microcrack development is used to explain the contact surface constraint of rock-concrete composite specimens,which explains the difference of mechanical properties between the two rock-concrete composite specimens in the experiment.Research results cannot only enrich the research content of the mechanics of rock contact,but also can serve as a valuable reference for the understanding of the corresponding mechanics mechanism of other similar composite specimens.