On the foundation of nonlinear robust control and exact generator model, this paper presents a design principle of NR-PSS (Nonlinear Robust Power System Stabilizer) for multi-machine power system, based on which an in...On the foundation of nonlinear robust control and exact generator model, this paper presents a design principle of NR-PSS (Nonlinear Robust Power System Stabilizer) for multi-machine power system, based on which an industrial NR-PSS equipment is developed. For popularizing it, the proposed parameter setting method of NR-PSS is completely the same as the widely used parameter adjustment rule of PSS. By virtue of real time digital simulator (RTDS), large disturbance experiments are carried out to compare the performances between generator excitation system equipped with NR-PSS and PSS in order to verify the correctness of design theory. The results show that compared with classical PSS, the proposed NR-PSS can dramatically improve the generator damping and attenuate the oscillation much faster, enhance the generator damping and raise both the small signal and large disturbance transient stability transmission power limit remarkably. The NR-PSS equipment with independent intellectual property right has been successfully put into operation on a 300 MW generator in Baishan Hydro Plant of Northeast China Grid more than 10 months.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account th...Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account the uncertainties in wind power generation when deciding when to operate these devices.In this paper, we describe a method to schedule the operation of these devices over the course of the following day.These schedules are designed to minimize wind-power generation curtailment, bus voltage violations, and dynamic reactive-power deviations,even under the worst possible conditions.Daily voltagecontrol decisions are initiated every 15 min using a dynamic optimization algorithm that predicts the state of the system over the next 4-hour period.For this, forecasts updated in real-time are employed, because they are more precise than forecasts for the day ahead.Day-ahead schedules are calculated using a two-stage robust mixedinteger optimization algorithm.The proposed control strategies were tested on a Chinese power network with wind power sources; the control performance was also validated numerically.展开更多
Purpose-The purpose of this paper is to address the problem of control in a typical chaotic power system.Chaotic oscillations cannot only extremely endanger the stabilization of the power system but they can also not ...Purpose-The purpose of this paper is to address the problem of control in a typical chaotic power system.Chaotic oscillations cannot only extremely endanger the stabilization of the power system but they can also not be controlled by adding the traditional controllers.So,the sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties.Closed-loop stability is proved using the Lyapunov stability theory.The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of the power system,eliminating control signal chattering and also show less control effort in comparison with the methods considered in previous literatures.Design/methodology/approach-The sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties.Closed-loop stability is proved using the Lyapunov stability theory.Findings-Closed-loop stability is proved using the Lyapunov stability theory.The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of power system,eliminating control signal chattering and also less control effort in comparison with the methods considered in previous literatures.Originality/value-Main contributions of the paper are as follows:the chaotic behavior of power systems with two uncertainty parameters and tracking reference signal for the control of generator angle and the controller signal are discussed;designing sliding mode control based on a fuzzy supervisor in order to practically implement for the first time;while the generator speed is constant,the proposed controller will enable the power system to go in any desired trajectory for generator angle at first time;stability of the closed-loop sliding mode control based on the fuzzy supervisor system is proved using the Lyapunov stability theory;simulation of the proposed controller shows that the chattering is low control signal.展开更多
In view of single machine to infinite bus system with static synchronous compensator, which is affected by internal and external disturbances, a nonlinear adaptive robust controller is constructed based on the improve...In view of single machine to infinite bus system with static synchronous compensator, which is affected by internal and external disturbances, a nonlinear adaptive robust controller is constructed based on the improved dynamic surface control method(IDSC). Compared with the conventional DSC, the sliding mode control is introduced to the dynamic surface design procedure, and the parameter update laws are designed using the uncertainty equivalence criterions. The IDSC method not only reduces the complexity of the controller but also greatly improves the system robustness, speed and accuracy. The derived controller cannot only attenuate the influences of external disturbances against system output, but also has strong robustness to system parameters variance because the damping coefficient is considered in the internal parameter uncertainty. Simulation result reveals that the designed controller can effectively improve the dynamic performances of the power system.展开更多
For the single phase inductance-capacitance-inductance(LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverte...For the single phase inductance-capacitance-inductance(LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverter, the current sharing among the inverters is achieved. Iterative learning strategy is suitable for repeated tracking control and inhibiting periodic disturbance, and is designed using robust performance index, so that it has the ability to overcome the uncertainty of system parameters. Compared with the repetitive control, the robust iterative learning control can get high precision output waveform, and enhance the tracking ability for waveform, and the distortion problem of the output signal can be solved effectively.展开更多
In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by L...In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.展开更多
A modern power system is expected to consist primarily of renewables,which either lack or have less rotating masses(i.e.,source of inertia)compared to the traditional generation sources.However,the growth of renewable...A modern power system is expected to consist primarily of renewables,which either lack or have less rotating masses(i.e.,source of inertia)compared to the traditional generation sources.However,the growth of renewables generation,based on power electronics,can substantially decrease the inertia levels of renewable power grids,which can create several frequency stability issues,resulting in power system degradation.To address this issue,this paper presents a recent virtual inertia scheme predicated on electric vehicles(EVs)to mimic the necessary inertia power in low-inertia smart hybrid power systems(SHPSs),thus regulating the system frequency and avoiding system instability.Moreover,to guarantee robust performance and more stability for SHPSs against multiple perturbations,system uncertainties,and physical constraints,this paper also proposes a robust control strategy relying on a coefficient diagram method(CDM)for the load frequency control(LFC)of SHPSs considering high renewables penetration and EVs.The efficacy of the proposed system(i.e.,robust LFC with the proposed VIC strategy)is validated by comparison with a conventional LFC with/without the proposed VIC system.In addition,the simulation outcomes show that the proposed system can considerably support smart low-inertia hybrid power systems for many different contingencies.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50525721 and 59837270)
文摘On the foundation of nonlinear robust control and exact generator model, this paper presents a design principle of NR-PSS (Nonlinear Robust Power System Stabilizer) for multi-machine power system, based on which an industrial NR-PSS equipment is developed. For popularizing it, the proposed parameter setting method of NR-PSS is completely the same as the widely used parameter adjustment rule of PSS. By virtue of real time digital simulator (RTDS), large disturbance experiments are carried out to compare the performances between generator excitation system equipped with NR-PSS and PSS in order to verify the correctness of design theory. The results show that compared with classical PSS, the proposed NR-PSS can dramatically improve the generator damping and attenuate the oscillation much faster, enhance the generator damping and raise both the small signal and large disturbance transient stability transmission power limit remarkably. The NR-PSS equipment with independent intellectual property right has been successfully put into operation on a 300 MW generator in Baishan Hydro Plant of Northeast China Grid more than 10 months.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
基金supported by the National Science Funds for Excellent Young Scholars (No.51621065)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51621065)
文摘Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account the uncertainties in wind power generation when deciding when to operate these devices.In this paper, we describe a method to schedule the operation of these devices over the course of the following day.These schedules are designed to minimize wind-power generation curtailment, bus voltage violations, and dynamic reactive-power deviations,even under the worst possible conditions.Daily voltagecontrol decisions are initiated every 15 min using a dynamic optimization algorithm that predicts the state of the system over the next 4-hour period.For this, forecasts updated in real-time are employed, because they are more precise than forecasts for the day ahead.Day-ahead schedules are calculated using a two-stage robust mixedinteger optimization algorithm.The proposed control strategies were tested on a Chinese power network with wind power sources; the control performance was also validated numerically.
文摘Purpose-The purpose of this paper is to address the problem of control in a typical chaotic power system.Chaotic oscillations cannot only extremely endanger the stabilization of the power system but they can also not be controlled by adding the traditional controllers.So,the sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties.Closed-loop stability is proved using the Lyapunov stability theory.The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of the power system,eliminating control signal chattering and also show less control effort in comparison with the methods considered in previous literatures.Design/methodology/approach-The sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties.Closed-loop stability is proved using the Lyapunov stability theory.Findings-Closed-loop stability is proved using the Lyapunov stability theory.The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of power system,eliminating control signal chattering and also less control effort in comparison with the methods considered in previous literatures.Originality/value-Main contributions of the paper are as follows:the chaotic behavior of power systems with two uncertainty parameters and tracking reference signal for the control of generator angle and the controller signal are discussed;designing sliding mode control based on a fuzzy supervisor in order to practically implement for the first time;while the generator speed is constant,the proposed controller will enable the power system to go in any desired trajectory for generator angle at first time;stability of the closed-loop sliding mode control based on the fuzzy supervisor system is proved using the Lyapunov stability theory;simulation of the proposed controller shows that the chattering is low control signal.
基金supported by K.C.Wong Magna Fund in Ningbo University,Pivot Research Team in Scientific and Technical Innovative of Zhejiang Province(Nos.2010R50004 and 2012R10004-03)Natural Science Foundation of Ningbo City(Nos.2012A610005 and 201401A61009)
文摘In view of single machine to infinite bus system with static synchronous compensator, which is affected by internal and external disturbances, a nonlinear adaptive robust controller is constructed based on the improved dynamic surface control method(IDSC). Compared with the conventional DSC, the sliding mode control is introduced to the dynamic surface design procedure, and the parameter update laws are designed using the uncertainty equivalence criterions. The IDSC method not only reduces the complexity of the controller but also greatly improves the system robustness, speed and accuracy. The derived controller cannot only attenuate the influences of external disturbances against system output, but also has strong robustness to system parameters variance because the damping coefficient is considered in the internal parameter uncertainty. Simulation result reveals that the designed controller can effectively improve the dynamic performances of the power system.
基金supported by Natural Science Foundation of Hebei Province(No.F2012203088)
文摘For the single phase inductance-capacitance-inductance(LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverter, the current sharing among the inverters is achieved. Iterative learning strategy is suitable for repeated tracking control and inhibiting periodic disturbance, and is designed using robust performance index, so that it has the ability to overcome the uncertainty of system parameters. Compared with the repetitive control, the robust iterative learning control can get high precision output waveform, and enhance the tracking ability for waveform, and the distortion problem of the output signal can be solved effectively.
文摘In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.
文摘A modern power system is expected to consist primarily of renewables,which either lack or have less rotating masses(i.e.,source of inertia)compared to the traditional generation sources.However,the growth of renewables generation,based on power electronics,can substantially decrease the inertia levels of renewable power grids,which can create several frequency stability issues,resulting in power system degradation.To address this issue,this paper presents a recent virtual inertia scheme predicated on electric vehicles(EVs)to mimic the necessary inertia power in low-inertia smart hybrid power systems(SHPSs),thus regulating the system frequency and avoiding system instability.Moreover,to guarantee robust performance and more stability for SHPSs against multiple perturbations,system uncertainties,and physical constraints,this paper also proposes a robust control strategy relying on a coefficient diagram method(CDM)for the load frequency control(LFC)of SHPSs considering high renewables penetration and EVs.The efficacy of the proposed system(i.e.,robust LFC with the proposed VIC strategy)is validated by comparison with a conventional LFC with/without the proposed VIC system.In addition,the simulation outcomes show that the proposed system can considerably support smart low-inertia hybrid power systems for many different contingencies.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.