提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力...提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力,提高了机器腿的响应速度和减振抗冲能力。使用复数矢量法和D-H方法建立该机器腿运动学模型,基于此模型求解足端运动工作空间,分析了LCS-Leg的越障能力。设计单腿仿真试验平台,对两种不同结构的机器腿进行仿真,对比两者的质心高度、前进速度和足端接触力,验证了所设计机器腿的运动性能。试制弹性足式机器人腿及其试验平台,通过实物样机单腿行走试验,验证了设计方法的有效性,并完成了四足机器人整体结构设计。展开更多
Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robot...Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robotic leg.Inspired by the simplified human leg structure,we present a 3-DOF robotic leg—OmniLeg,that is capable of making omnidirectional legged locomotion while keeping constant posture of the foot.Additionally,the concentrated drive mode,in which all the motor actuators are installed in the torso and do not move with the leg,minimizes the inertia of the robotic leg.In this paper,the modular design,the kinematics model,the structural analysis,the workspace,and the performance evaluation of the OmniLeg are discussed.Furthermore,we build a prototype based on the proposed design,and the precision of it is verified by the error calibration experiment which is conducted by tracking the trajectory of the prototype’s endpoint.Then,we present an OmniLeg-based single legged mobile robot.The capability of omnidirectional legged locomotion of the OmniLeg is demonstrated by the experiments.展开更多
The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on th...The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain.The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes,which enhances the obstacle surmounting capability.The pitch adjustment in leg unit requires as few independent adjusting actuators as possible.Based on the kinematic analysis of the mechanical leg,the biped and quadruped leg units with adjustive pitch are analyzed and compared.The configuration of the robot is designed to obtain a compact structure and pragmatic performance.The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented.Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out.The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities.展开更多
文摘提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力,提高了机器腿的响应速度和减振抗冲能力。使用复数矢量法和D-H方法建立该机器腿运动学模型,基于此模型求解足端运动工作空间,分析了LCS-Leg的越障能力。设计单腿仿真试验平台,对两种不同结构的机器腿进行仿真,对比两者的质心高度、前进速度和足端接触力,验证了所设计机器腿的运动性能。试制弹性足式机器人腿及其试验平台,通过实物样机单腿行走试验,验证了设计方法的有效性,并完成了四足机器人整体结构设计。
基金This work was supported by the National Natural Science Foundation of China(NO.52175069).
文摘Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robotic leg.Inspired by the simplified human leg structure,we present a 3-DOF robotic leg—OmniLeg,that is capable of making omnidirectional legged locomotion while keeping constant posture of the foot.Additionally,the concentrated drive mode,in which all the motor actuators are installed in the torso and do not move with the leg,minimizes the inertia of the robotic leg.In this paper,the modular design,the kinematics model,the structural analysis,the workspace,and the performance evaluation of the OmniLeg are discussed.Furthermore,we build a prototype based on the proposed design,and the precision of it is verified by the error calibration experiment which is conducted by tracking the trajectory of the prototype’s endpoint.Then,we present an OmniLeg-based single legged mobile robot.The capability of omnidirectional legged locomotion of the OmniLeg is demonstrated by the experiments.
基金Supported by National Natural Science Foundation of China(Grant No.51735009).
文摘The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain.The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes,which enhances the obstacle surmounting capability.The pitch adjustment in leg unit requires as few independent adjusting actuators as possible.Based on the kinematic analysis of the mechanical leg,the biped and quadruped leg units with adjustive pitch are analyzed and compared.The configuration of the robot is designed to obtain a compact structure and pragmatic performance.The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented.Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out.The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities.