Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabiliti...Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on elec- tromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.展开更多
This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions a...This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.展开更多
Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integratin...Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integrating separate actuators and sensors.The actuation performances and the sensing reliability are affected owing to the unmatched materials and weak connections.Realizing a seamless integration of soft actuators and sensors remains a grand challenge.Here,we report a fabrication strategy to endow soft actuators with sensing capability and programmable actuation performances.The foam inside the actuator functions as actuator and sensor simultaneously,effectively addressing the conformability and connection reliability issues that existed in current self-sensing actuators.The actuators are lightweight(a decrease of 58%in weight),powerful(lifting a load of 433 times of its own weight),and versatile(coupling twisting and contraction motions).Furthermore,the actuators are able to detect multiple physical stimuli with high reliability,demonstrating their exteroception and proprioception capability.Two self-sensing soft robotic prototypes,including a bionic bicep and a bionic neck,are constructed to illustrate their multifunctionality.Our study opens up new possibilities for the design of soft actuators and has promising potential in a variety of applications,ranging from human-robot interaction,soft orthotics,to wearable robotics.展开更多
In this research we propose a novel inchworm robot, which is composed of an Electromagnetic Oscillatory Actuator (EOA) and claws. The EOA consists of a yoke, a magnet, and a coil. The overall robot size is 12.2 mm x...In this research we propose a novel inchworm robot, which is composed of an Electromagnetic Oscillatory Actuator (EOA) and claws. The EOA consists of a yoke, a magnet, and a coil. The overall robot size is 12.2 mm x 11 mm x 9 mm (length x height ~ width). The locomotion of the robot is achieved by different amounts of slips when the robot stretches and contracts its front leg. To realize locomotion, the working conditions were calculated theoretically and the calculated input signal was applied to the robot. The performance of the inchworm robot was evaluated experimentally with varying input voltages and frequencies. A simple op-amps based driving circuit was used to provide a square-wave input. Travel speed, average distance per step of the robot, and moving distance of the leg and body at each step were measured. The maximum travel speed was 36 mm-s-1 at 30 Hz, which validates our simple locomotion strategy experimentally.展开更多
In this paper, we propose a miniaturized tadpole-like robot using an electromagnetic oscillatory actuator. The electro- magnetic actuator has a simple structure with a moving-magnet type and the body size is 13 mm (l...In this paper, we propose a miniaturized tadpole-like robot using an electromagnetic oscillatory actuator. The electro- magnetic actuator has a simple structure with a moving-magnet type and the body size is 13 mm (length) × 11 mm (height) ×10 mm (width). A tail has the thickness of 100 μm and the length of 20 mm which is twice of the body-length (BL). The tail attached to the oscillatory actuator generates undulatory propulsion for the forward swimming. Moreover, the tadpole robot enables the change of the direction by controlling input signal pattems applied to the oscillatory actuator. Prototypes of the tadpole robot have been manufactured and the thrust force and swimming speed are measured to evaluate the performance of the biomimetic robot in water at various tail-beat frequencies. The maximum thrust force is 42 mN at the tail-beat frequency of 30 Hz with voltage of 3 V, enabling the tadpole robot to swim at the speed of 210 mm·s^-1 (6 BL·s^-1). The tadpole robot can also change its moving direction with the angular velocity of 21 deg·s^-1 at the half pulse pattem of 30 Hz.展开更多
In this work, a three-dimensional (3D) Computational Fluid Dynamics (CFD) model was built to simulate the tail fin motion of a fish robot actuated by a piezoceramic composite actuator, and to determine the maximum...In this work, a three-dimensional (3D) Computational Fluid Dynamics (CFD) model was built to simulate the tail fin motion of a fish robot actuated by a piezoceramic composite actuator, and to determine the maximum thrust tail-beat frequency. A simulation of the tail fin at a tail-beat frequency was performed to confirm measured thrust data from a previous study. The computed and measured thrusts were in good agreement. A series of thrust simulations were conducted for various tail-beat frequencies to confirm the maximum thrust frequency that was obtained from thrust measurements in the previous study. The largest thrust was calculated at a tail-beat frequency of 3.7 Hz and vortices around the tail were fully separated. The calculated maximum thrust tail-beat frequency was in good agreement with the measured frequency. Flow characteristics during tail fin motion were examined to explain why the largest thrust occurred at this particular tail-beat frequency.展开更多
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear...In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.展开更多
基金This work was supported by the National Natural Science Foundation of China (61673372, 61522312, 91748212, and 61433017), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW- JSC008), and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on elec- tromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.
文摘This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.
基金supported by the National Natural Science Foundation of China(Grant No.52205073)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD22E050002)+1 种基金China National Postdoctoral Program for Innovative Talents(Grant No.BX2021258)China Postdoctoral Science Foundation(Grant No.2022M710125)。
文摘Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integrating separate actuators and sensors.The actuation performances and the sensing reliability are affected owing to the unmatched materials and weak connections.Realizing a seamless integration of soft actuators and sensors remains a grand challenge.Here,we report a fabrication strategy to endow soft actuators with sensing capability and programmable actuation performances.The foam inside the actuator functions as actuator and sensor simultaneously,effectively addressing the conformability and connection reliability issues that existed in current self-sensing actuators.The actuators are lightweight(a decrease of 58%in weight),powerful(lifting a load of 433 times of its own weight),and versatile(coupling twisting and contraction motions).Furthermore,the actuators are able to detect multiple physical stimuli with high reliability,demonstrating their exteroception and proprioception capability.Two self-sensing soft robotic prototypes,including a bionic bicep and a bionic neck,are constructed to illustrate their multifunctionality.Our study opens up new possibilities for the design of soft actuators and has promising potential in a variety of applications,ranging from human-robot interaction,soft orthotics,to wearable robotics.
文摘In this research we propose a novel inchworm robot, which is composed of an Electromagnetic Oscillatory Actuator (EOA) and claws. The EOA consists of a yoke, a magnet, and a coil. The overall robot size is 12.2 mm x 11 mm x 9 mm (length x height ~ width). The locomotion of the robot is achieved by different amounts of slips when the robot stretches and contracts its front leg. To realize locomotion, the working conditions were calculated theoretically and the calculated input signal was applied to the robot. The performance of the inchworm robot was evaluated experimentally with varying input voltages and frequencies. A simple op-amps based driving circuit was used to provide a square-wave input. Travel speed, average distance per step of the robot, and moving distance of the leg and body at each step were measured. The maximum travel speed was 36 mm-s-1 at 30 Hz, which validates our simple locomotion strategy experimentally.
文摘In this paper, we propose a miniaturized tadpole-like robot using an electromagnetic oscillatory actuator. The electro- magnetic actuator has a simple structure with a moving-magnet type and the body size is 13 mm (length) × 11 mm (height) ×10 mm (width). A tail has the thickness of 100 μm and the length of 20 mm which is twice of the body-length (BL). The tail attached to the oscillatory actuator generates undulatory propulsion for the forward swimming. Moreover, the tadpole robot enables the change of the direction by controlling input signal pattems applied to the oscillatory actuator. Prototypes of the tadpole robot have been manufactured and the thrust force and swimming speed are measured to evaluate the performance of the biomimetic robot in water at various tail-beat frequencies. The maximum thrust force is 42 mN at the tail-beat frequency of 30 Hz with voltage of 3 V, enabling the tadpole robot to swim at the speed of 210 mm·s^-1 (6 BL·s^-1). The tadpole robot can also change its moving direction with the angular velocity of 21 deg·s^-1 at the half pulse pattem of 30 Hz.
文摘In this work, a three-dimensional (3D) Computational Fluid Dynamics (CFD) model was built to simulate the tail fin motion of a fish robot actuated by a piezoceramic composite actuator, and to determine the maximum thrust tail-beat frequency. A simulation of the tail fin at a tail-beat frequency was performed to confirm measured thrust data from a previous study. The computed and measured thrusts were in good agreement. A series of thrust simulations were conducted for various tail-beat frequencies to confirm the maximum thrust frequency that was obtained from thrust measurements in the previous study. The largest thrust was calculated at a tail-beat frequency of 3.7 Hz and vortices around the tail were fully separated. The calculated maximum thrust tail-beat frequency was in good agreement with the measured frequency. Flow characteristics during tail fin motion were examined to explain why the largest thrust occurred at this particular tail-beat frequency.
文摘In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.