The objective of this study was to investigate the concentration and spatial distribu- tion patterns of 9 potentially toxic heavy metal elements (As, Cd, Co, Cr, Pb, Cu, Z.n, Mn, and Ni) in road dust in the Bayan Ob...The objective of this study was to investigate the concentration and spatial distribu- tion patterns of 9 potentially toxic heavy metal elements (As, Cd, Co, Cr, Pb, Cu, Z.n, Mn, and Ni) in road dust in the Bayan Obo Mining Region in Inner Mongolia, China. Contamination levels were evaluated using the geoaccumulation index and the enrichment factor. Human health risks for each heavy metal element were assessed using a human exposure model. Results showed that the dust contained significantly elevated heavy metal elements concen- trations compared with the background soil. The spatial distribution pattern of all tested met- als except for As coincided with the locations of industrial areas while the spatial distribution of As was associated with domestic sources. The contamination evaluation indicated that Cd, Pb, and Mn in road dust mainly originated from anthropogenic sources with a rating of "heav- ily polluted" to "extremely polluted," whereas the remaining metals originated from both natural and anthropogenic sources with a level of "moderately polluted". The non-cancer health risk assessment showed that ingestion was the primary exposure route for all metals in the road dust and that Mn, Cr, Pb, and As were the main contributors to non-cancer risks in both children and adults. Higher HI values were calculated for children (H1=1.89), indicating that children will likely experience higher health risks compared with adults (H1=0.23). The cancer risk assessment showed that Cr was the main contributor, with cancer risks which were 2-3 orders of magnitude higher than those for other metals. Taken in concert, the non-cancer risks posed by all studied heavy metal elements and the cancer risks posed by As Co, Cr, Cd, and Ni to both children and adults in Bayan Obo Mining Region fell within the acceptable range.展开更多
Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100...Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations ofPt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentrations of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 rig/g, respectively. The distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the dements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.展开更多
基金National Natural Scientific Foundation of China,No.41571473,No.41401591
文摘The objective of this study was to investigate the concentration and spatial distribu- tion patterns of 9 potentially toxic heavy metal elements (As, Cd, Co, Cr, Pb, Cu, Z.n, Mn, and Ni) in road dust in the Bayan Obo Mining Region in Inner Mongolia, China. Contamination levels were evaluated using the geoaccumulation index and the enrichment factor. Human health risks for each heavy metal element were assessed using a human exposure model. Results showed that the dust contained significantly elevated heavy metal elements concen- trations compared with the background soil. The spatial distribution pattern of all tested met- als except for As coincided with the locations of industrial areas while the spatial distribution of As was associated with domestic sources. The contamination evaluation indicated that Cd, Pb, and Mn in road dust mainly originated from anthropogenic sources with a rating of "heav- ily polluted" to "extremely polluted," whereas the remaining metals originated from both natural and anthropogenic sources with a level of "moderately polluted". The non-cancer health risk assessment showed that ingestion was the primary exposure route for all metals in the road dust and that Mn, Cr, Pb, and As were the main contributors to non-cancer risks in both children and adults. Higher HI values were calculated for children (H1=1.89), indicating that children will likely experience higher health risks compared with adults (H1=0.23). The cancer risk assessment showed that Cr was the main contributor, with cancer risks which were 2-3 orders of magnitude higher than those for other metals. Taken in concert, the non-cancer risks posed by all studied heavy metal elements and the cancer risks posed by As Co, Cr, Cd, and Ni to both children and adults in Bayan Obo Mining Region fell within the acceptable range.
基金Project supported by the Natural Science Foundation of Beijing (No. 2063025) the Municipal Education Foundation of Beijing (No. KM200610028007)
文摘Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations ofPt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentrations of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 rig/g, respectively. The distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the dements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.