Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating...Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature(MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature(MAGST) and maximum annual ground surface temperature(MaxAGST) for 1972–2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature(MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index(RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of-42.5 °C-day/decade, 85.4 °C-day/decade and-0.018/decade, respectively.展开更多
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin...Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezi展开更多
三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温...三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温再分析资料,利用线性倾向法和滑动平均法并结合GIS空间分析和制图,计算并分析了三江源地区1901—2018年冻融指数变化趋势及其空间分布特征。结果表明:三江源地区冻结指数在1901—2018年整体以-1.1℃·d·a^(-1)的斜率呈波动减少趋势,经历了三个波动变化阶段:1901—1943年的下降(-3.4℃·d·a^(-1))、1943—1966年的升高(8.8℃·d·a^(-1))、1966—2018年的再次下降(-4.3℃·d·a^(-1))。融化指数与冻结指数的变化相反,整体以0.34℃·d·a^(-1)的斜率呈波动上升趋势,呈现升高(1901—1943年,3.3℃·d·a^(-1))、下降(1943—1981年,-3.1℃·d·a^(-1))、再次升高(1981—2018年,2.9℃·d·a^(-1))的趋势。在空间分布上,自西向东随海拔和多年冻土连续性降低,冻结指数由3 400℃·d递减到600℃·d,融化指数由接近0℃·d增加到1 800℃·d。长江源区冻结指数最大,融化指数最小;黄河源区冻结指数最小,融化指数最大。研究成果可为三江源地区冻土变化及其对高寒生态环境的影响研究提供科学借鉴。展开更多
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and thei...The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.展开更多
基金supported by the Chinese Academy of Sciences Key Research Program (No. KZZD-EW-13)the Natural Science Foundation of China (Nos. 91025013, 91325202)+1 种基金the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZY-06), CASthe Major Research Plan of the National Natural Science Foundation of China (No. 2013CBA01802)
文摘Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature(MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature(MAGST) and maximum annual ground surface temperature(MaxAGST) for 1972–2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature(MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index(RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of-42.5 °C-day/decade, 85.4 °C-day/decade and-0.018/decade, respectively.
基金funded by the National Science and Technology Support Plan(2015BAD07B02)
文摘Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezi
文摘三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温再分析资料,利用线性倾向法和滑动平均法并结合GIS空间分析和制图,计算并分析了三江源地区1901—2018年冻融指数变化趋势及其空间分布特征。结果表明:三江源地区冻结指数在1901—2018年整体以-1.1℃·d·a^(-1)的斜率呈波动减少趋势,经历了三个波动变化阶段:1901—1943年的下降(-3.4℃·d·a^(-1))、1943—1966年的升高(8.8℃·d·a^(-1))、1966—2018年的再次下降(-4.3℃·d·a^(-1))。融化指数与冻结指数的变化相反,整体以0.34℃·d·a^(-1)的斜率呈波动上升趋势,呈现升高(1901—1943年,3.3℃·d·a^(-1))、下降(1943—1981年,-3.1℃·d·a^(-1))、再次升高(1981—2018年,2.9℃·d·a^(-1))的趋势。在空间分布上,自西向东随海拔和多年冻土连续性降低,冻结指数由3 400℃·d递减到600℃·d,融化指数由接近0℃·d增加到1 800℃·d。长江源区冻结指数最大,融化指数最小;黄河源区冻结指数最小,融化指数最大。研究成果可为三江源地区冻土变化及其对高寒生态环境的影响研究提供科学借鉴。
基金supported by the National Natural Science Foundation of China(Grant No.41401081)the State Key Laboratory of Frozen Soils Engineering(Grant Nos.SKLFSE-ZT-41,SKLFSE-ZT-20and SKLFSE-ZT-12)
文摘The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.