Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawa...Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.展开更多
The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic b...The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic by the Czech Hydrometeorological Institute during the period 2000-2010 and 2001-2010 respectively. The data were used to evaluate the natural background levels of these radionuclides and the impact of human activities on the water environment. For potassium-40 in sediments, the natural background level was estimated to be 570 Bq/kg. To evaluate the background level for radium-226, the river sites affected by human activities (mining and processing uranium ore, coal) were eliminated from the assessment. The average natural background values were 47.8 Bq/kg for radium-226 and 47.2 Bq/kg for radium-228 in sediments and 86.5 Bq/kg for radium-226 and 87.9 Bq/kg for radium-228 in suspended matter. The river sediments were identified as good indicators of radioactive contamination, especially radium-226, which recorded historic contamination due to former uranium mining and milling. The radium-226 contamination rate was assessed using the ratio of radium-226 to radium-228. This ratio was used to classify sediment according to the relative contamination from the uranium industry. The residual contamination of caesium-137 due to the Chernobyl accident in 1986 was also assessed. Average values of caesium-137 were 14.0 Bq/kg in sediments and 25.0 Bq/kg in suspended matter.展开更多
The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed.In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium,and poll...The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed.In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium,and polluted rivers were simulated by domestic sewage,after 10-month sand column test it was found that NH_4-N came to adsorption sa- turation on the 17th day in coarse sand and on the 130~140th day in medium sand,then had a higher effluent concentration because of desorption.It is concluded that NH_4-N eas- ily moved to ground water.When the concentration of NH_4-N in Liangshui River were 46.86,26.95 mg/L,that in groundwater are less than 1.10 mg/L.It is found that Liangshui River have a little influence on groundwater because of bottom mud,thickness and char- acter of the infiltration medium under the river bed and seepage quantity of river water. Clean water leaching test states that after the silt is cleared away and clean water is poured,NH_4-N in the penetration media under the polluted river is obviously carried into ground water,and ground water is polluted secondly.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52379061)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230099)the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(Grant No.QTKS0034W23292).
文摘Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.
文摘The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic by the Czech Hydrometeorological Institute during the period 2000-2010 and 2001-2010 respectively. The data were used to evaluate the natural background levels of these radionuclides and the impact of human activities on the water environment. For potassium-40 in sediments, the natural background level was estimated to be 570 Bq/kg. To evaluate the background level for radium-226, the river sites affected by human activities (mining and processing uranium ore, coal) were eliminated from the assessment. The average natural background values were 47.8 Bq/kg for radium-226 and 47.2 Bq/kg for radium-228 in sediments and 86.5 Bq/kg for radium-226 and 87.9 Bq/kg for radium-228 in suspended matter. The river sediments were identified as good indicators of radioactive contamination, especially radium-226, which recorded historic contamination due to former uranium mining and milling. The radium-226 contamination rate was assessed using the ratio of radium-226 to radium-228. This ratio was used to classify sediment according to the relative contamination from the uranium industry. The residual contamination of caesium-137 due to the Chernobyl accident in 1986 was also assessed. Average values of caesium-137 were 14.0 Bq/kg in sediments and 25.0 Bq/kg in suspended matter.
基金the National Natural Science Foundation of China(40772165)
文摘The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed.In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium,and polluted rivers were simulated by domestic sewage,after 10-month sand column test it was found that NH_4-N came to adsorption sa- turation on the 17th day in coarse sand and on the 130~140th day in medium sand,then had a higher effluent concentration because of desorption.It is concluded that NH_4-N eas- ily moved to ground water.When the concentration of NH_4-N in Liangshui River were 46.86,26.95 mg/L,that in groundwater are less than 1.10 mg/L.It is found that Liangshui River have a little influence on groundwater because of bottom mud,thickness and char- acter of the infiltration medium under the river bed and seepage quantity of river water. Clean water leaching test states that after the silt is cleared away and clean water is poured,NH_4-N in the penetration media under the polluted river is obviously carried into ground water,and ground water is polluted secondly.