期刊文献+
共找到323篇文章
< 1 2 17 >
每页显示 20 50 100
模糊层次分析法的改进及其在地铁施工风险评估中的应用 被引量:18
1
作者 应国柱 汪鹏程 +2 位作者 朱大勇 张永亮 秦榛 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第10期1244-1248,共5页
地铁施工风险评估中,在辨识出地铁风险因素后,运用层次分析法来建立风险指标评价体系,进而对风险因素进行权重排序,可为后面的模糊综合评判奠定基础。传统的层次分析法在计算权重时,存在判断矩阵一致性难以保证且精度不高的缺陷。文章... 地铁施工风险评估中,在辨识出地铁风险因素后,运用层次分析法来建立风险指标评价体系,进而对风险因素进行权重排序,可为后面的模糊综合评判奠定基础。传统的层次分析法在计算权重时,存在判断矩阵一致性难以保证且精度不高的缺陷。文章对传统的层次分析法的9标度法进行改进,使其转化为满足一致性要求的模糊一致性矩阵;利用约束规划问题的解得出各因素的权重,并用数学迭代法对权重向量进行迭代,直至满足精度要求。由于不需要再进行一致性检验,采用改进的方法大大减少了计算量。通过合肥地铁1、2号线施工的风险因素权重排序的实例计算,证实了该方法的优越之处。 展开更多
关键词 风险评估 模糊层次分析法 权重向量 判断矩阵
下载PDF
一种基于信息熵的信息系统安全风险分析方法 被引量:13
2
作者 付沙 《情报科学》 CSSCI 北大核心 2013年第6期38-42,共5页
针对信息系统安全风险分析的准确性问题,提出一种基于信息熵的信息系统安全风险分析方法。在此基础上构建了一种信息系统安全风险分析模型,并通过实例分析验证所提方法可有效应用于信息系统安全风险分析。
关键词 信息熵 信息系统 风险分析 故障树分析 熵权系数 权向量
原文传递
基于支持向量机的钻柱黏滑振动等级评估方法 被引量:9
3
作者 陈冲 张仕民 +2 位作者 彭鹤 崔灿 刘杨 《石油机械》 北大核心 2019年第1期20-26,共7页
为评估钻柱黏滑振动的严重程度,提出了一种基于因子分析(FA)与支持向量机(SVM)的黏滑振动风险评估方法。对仿真得到的扭矩数据进行时域与频域分析,提取信号的特征值,然后应用因子分析方法减少高维特征的冗余信息,获取特征向量,最后通过... 为评估钻柱黏滑振动的严重程度,提出了一种基于因子分析(FA)与支持向量机(SVM)的黏滑振动风险评估方法。对仿真得到的扭矩数据进行时域与频域分析,提取信号的特征值,然后应用因子分析方法减少高维特征的冗余信息,获取特征向量,最后通过SVM对降维处理后的数据进行黏滑振动等级分类。研究结果表明:基于井口扭矩信号的SVM黏滑振动等级预测方法的整体预测精度超过80%,能够较准确地对黏滑振动强度等级进行预测。因此该方法是一个有效的黏滑振动等级分类方法,应用该方法能够有效地对钻柱黏滑振动等级进行识别,有助于司钻根据钻柱黏滑振动剧烈程度实时调整钻井参数,减轻黏滑振动产生的危害,提高钻井作业效率和安全性。 展开更多
关键词 黏滑振动 风险评估 时域频域分析 因子分析 特征向量 支持向量机
下载PDF
Development of a depression in Parkinson's disease prediction model using machine learning 被引量:9
4
作者 Haewon Byeon 《World Journal of Psychiatry》 SCIE 2020年第10期234-244,共11页
BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop... BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients. 展开更多
关键词 Depression in Parkinson's disease Supervised Machine Learning Neuropsychological test risk factor Support vector machine Rapid eye movement sleep behavior disorders
下载PDF
基于AHP的尾矿库灾害风险评估方法研究 被引量:9
5
作者 刘畅 徐必根 唐绍辉 《有色金属(矿山部分)》 2012年第6期87-91,共5页
为实现对尾矿库灾害风险的定量评估,确保尾矿库安全,提出了一种基于尾矿坝、尾砂输送及排放、防洪排洪系统、监测管理系统等4个单元的尾矿库灾害风险评估模型。利用AHP法建立了评价矩阵,通过计算确定各风险因素的权重。结果表明,尾矿库... 为实现对尾矿库灾害风险的定量评估,确保尾矿库安全,提出了一种基于尾矿坝、尾砂输送及排放、防洪排洪系统、监测管理系统等4个单元的尾矿库灾害风险评估模型。利用AHP法建立了评价矩阵,通过计算确定各风险因素的权重。结果表明,尾矿库的设计与施工、调洪能力、排水设施、管理制度是导致尾矿库灾害的决定因素。AHP法能直接地、客观地反映影响尾矿库安全的各因素的重要程度,为有针对性地排除隐患、制定尾矿库管理措施、提高尾矿库安全管理水平等提供了科学依据。 展开更多
关键词 尾矿库 AHP 风险评估 权向量
下载PDF
硐室施工人员风险感知的心理距离模型 被引量:8
6
作者 袁轩 陈瑶 袁国常 《中国安全科学学报》 CAS CSCD 北大核心 2019年第5期31-36,共6页
为厘清地下硐室各风险因素对施工人员风险感知水平的作用机制,首先,结合文献和实地调研考察,确定地下硐室施工人员风险感知各影响因素;然后,运用心理距离理论将影响因素归纳为3个距离维度,构建心理距离结构方程模型(SEM),计算各心理距... 为厘清地下硐室各风险因素对施工人员风险感知水平的作用机制,首先,结合文献和实地调研考察,确定地下硐室施工人员风险感知各影响因素;然后,运用心理距离理论将影响因素归纳为3个距离维度,构建心理距离结构方程模型(SEM),计算各心理距离对风险感知水平影响的路径系数;最后,利用向量模型计算各心理距离对风险感知水平的敏感系数,验证SEM计算的准确性。结果表明:收入距离维度对工人风险感知水平的影响最大。 展开更多
关键词 地下硐室 施工人员 风险感知 结构方程模型(SEM) 向量模型 敏感系数
下载PDF
基于调控云平台的变电站二次系统故障主动预警技术 被引量:1
7
作者 李泽科 林静怀 +2 位作者 李军良 余斯航 李兆祥 《电子设计工程》 2024年第3期88-91,96,共5页
为避免因变压器实际功率过大而造成电力系统瘫痪问题,针对基于调控云平台的变电站二次系统故障主动预警技术展开研究。按照调控云平台部署情况,搭建IaaS诊断网络,根据云变电系数的实际取值,推导出完整的故障数据集合,实现对变电故障特... 为避免因变压器实际功率过大而造成电力系统瘫痪问题,针对基于调控云平台的变电站二次系统故障主动预警技术展开研究。按照调控云平台部署情况,搭建IaaS诊断网络,根据云变电系数的实际取值,推导出完整的故障数据集合,实现对变电故障特征的提取。利用风险向量指标,完善故障数据关联规则,再借助已获取的变电故障特征参量,求解预警建模条件,完成基于调控云平台的变电站二次系统故障主动预警方法的设计。实验结果表明,当变压器实际功率达到其额定功率的95%时,应用调控云平台的变电主机就会发出预警,可以有效解决因功率过载而导致的电力系统瘫痪问题。 展开更多
关键词 调控云平台 变电站 故障预警 IaaS架构 风险向量 变电功率
下载PDF
基于ACO算法的地铁工程施工安全风险评价 被引量:6
8
作者 李晓娟 丰繁 徐乐 《哈尔滨商业大学学报(自然科学版)》 CAS 2019年第4期482-488,共7页
地铁工程大部分施工段属于地下工程,施工安全风险大,影响因素众多.为了处理施工中安全风险因素之间的非线性问题,控制地铁施工安全事故的发生,以地铁工程施工阶段的安全风险作为研究对象,分别从管理、环境、机械设备、人员、材料以及技... 地铁工程大部分施工段属于地下工程,施工安全风险大,影响因素众多.为了处理施工中安全风险因素之间的非线性问题,控制地铁施工安全事故的发生,以地铁工程施工阶段的安全风险作为研究对象,分别从管理、环境、机械设备、人员、材料以及技术六个方面进行探讨.同时引入蚁群算法,结合支持向量机来分析施工中的不确定风险因素,从而构建了基于蚁群-支持向量机的地铁施工项目安全风险评价模型.通过福州地铁2号线工程案例成功验证了评价模型的可靠性与实用性,帮助工程各参与单位更好、更科学的开展现场安全管理工作. 展开更多
关键词 地铁工程施工 风险评价 支持向量机 蚁群算法 风险因素
下载PDF
基于相似样本归并的大样本混合信用评估模型 被引量:6
9
作者 张润驰 杜亚斌 +2 位作者 薛立国 徐源浩 吴心弘 《管理科学学报》 CSSCI CSCD 北大核心 2018年第7期77-90,共14页
当前面向大样本设计的信用评估模型,大多没有深入探究大样本的分布特征,只是简单地将传统评估方法应用在大样本上.首先提出了用于描述大样本分布特征的相关属性集、边界向量等若干概念及定义,并证明了其主要性质.之后在两个大样本数据... 当前面向大样本设计的信用评估模型,大多没有深入探究大样本的分布特征,只是简单地将传统评估方法应用在大样本上.首先提出了用于描述大样本分布特征的相关属性集、边界向量等若干概念及定义,并证明了其主要性质.之后在两个大样本数据集的基础上,研究了样本在相似性方面的分布特征,最后设计了一种大样本混合信用评估模型——HLSCE模型.HLSCE模型认为在大样本数据集中,样本的同一属性在不同局部区域内,对分类性能的贡献是不同的.具体地,HLSCE模型根据各样本与边界向量的相似性差异,结合生物启发式算法,将样本归并划分为若干子集并分别在其上训练基分类器.实证研究表明,HLSCE模型的分类精度相比于现有的代表性信用评估模型更高,同时也具有更为优越的平衡性与稳定性. 展开更多
关键词 信用风险 信用评估 大样本 边界向量
下载PDF
一种新的股市风险度量指标及其应用 被引量:3
10
作者 朱世武 张尧庭 徐小庆 《经济数学》 2002年第2期1-9,共9页
本文充分利用了多元统计分析的技术 ,提出了用收益的方差协方差矩阵引出的特征根作为股市风险的一种量度指标 ,在此基础上 ,推导出了第一特征向量的分块结构公式 ,并给出了具有实际意义的解释。本文的思想及技术路线 。
关键词 风险 随机向量 协方差阵 特征值 板块
下载PDF
A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance 被引量:6
11
作者 Chuang Chen Ningyun Lu +1 位作者 Bin Jiang Cunsong Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期412-422,共11页
Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of over... Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of overestimated RUL on maintenance scheduling is not of concern.In this work,an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level.The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends.Then,the latent structure between the degradation features and the RUL labels is modeled by a support vector regression(SVR)model and a long short-term memory(LSTM)network,respectively.To enhance the prediction robustness and increase its marginal utility,the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters.By designing a cost function with penalty mechanism,the three parameters are determined using a modified grey wolf optimization algorithm.In addition,a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method.Verification is done using an aero-engine data set from NASA.The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy. 展开更多
关键词 Long short-term memory(LSTM)network predictive maintenance remaining useful life(RUL)estimation risk-averse adaptation support vector regression(SVR)
下载PDF
Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning 被引量:1
12
作者 Wen-geng Cao Yu Fu +4 位作者 Qiu-yao Dong Hai-gang Wang Yu Ren Ze-yan Li Yue-ying Du 《China Geology》 CAS CSCD 2023年第3期409-419,共11页
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive... Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides 展开更多
关键词 Landslide susceptibility model risk assessment Machine learning Support vector machines Logistic regression Random forest Extreme gradient boosting Linear discriminant analysis Ensemble modeling Factor analysis Geological disaster survey engineering Middle mountain area Yellow River Basin
下载PDF
基于风险轨迹的开源软件安全性缺陷定位方法
13
作者 王强 周金宇 金超武 《计算机仿真》 北大核心 2023年第7期397-401,共5页
在开源软件的试运行阶段,由于软件模块间的复杂关系,使得缺陷定位异常困难,基于此,从风险轨迹角度出发,提出一种软件安全性缺陷定位方法。分析开源软件常见的几种缺陷报告,通过在程序中执行测试用例,得到函数调用序列;在含有缺陷的程序... 在开源软件的试运行阶段,由于软件模块间的复杂关系,使得缺陷定位异常困难,基于此,从风险轨迹角度出发,提出一种软件安全性缺陷定位方法。分析开源软件常见的几种缺陷报告,通过在程序中执行测试用例,得到函数调用序列;在含有缺陷的程序中运行测试用例,提取缺陷风险轨迹,明确缺陷函数;利用TPA方法构建风险度传播模型,确定目标模块的风险度向量,最后根据缺陷报告标签值确定开源软件内缺陷具体位置。仿真结果表明,所提方法可以准确找出软件中潜在的危险程序,且具有较高的精度。 展开更多
关键词 风险轨迹 开源软件 缺陷定位 风险度向量
下载PDF
Power transmission risk assessment considering component condition 被引量:4
14
作者 Lei GUO Qiwei QIU +2 位作者 Jian LIU Yu ZHOU Linglei JIANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第1期50-58,共9页
This paper proposes a new method for power transmission risk assessment considering historical failure statistics of transmission systems and operation failure risks of system components.Component failure risks are in... This paper proposes a new method for power transmission risk assessment considering historical failure statistics of transmission systems and operation failure risks of system components.Component failure risks are integrated into the new method based on operational condition assessment of components using the support vector data description(SVDD)approach.The traditional outage probability model of transmission lines has been modified to build a new framework for power transmission system risk assessment.The proposed SVDD approach can provide a suitable mechanism to map component assessment grades to failure risks based on probabilistic behaviors of power system failures.Under the new method,both up-todate component failure risks and traditional system risk indices can be processed with the proposed outage model.As a result,component failure probabilities are not only related to historical statistic data but also operational data of components,and derived risk indices can reflect current operational conditions of components.In simulation studies,the SVDD approach is employed to evaluate component conditions and link such conditions to failure rates using up-to-date component operational data,including both on-line and off-line data of components.The IEEE 24-bus RTS-1979 system is used to demonstrate that component operational conditions can greatly affect the overall transmission system failure risks. 展开更多
关键词 risk assessment Component failure risk Outage probability Condition assessment Support vector data description
原文传递
Research on Natural Gas Short-Term Load Forecasting Based on Support Vector Regression 被引量:1
15
作者 刘涵 刘丁 +1 位作者 郑岗 梁炎明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期732-736,共5页
Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Mac... Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice. 展开更多
关键词 structure risk minimization support vector machines support vectorregression load forecasting neural network
下载PDF
Coal and gas outburst prediction model based on principal component analysis and improved support vector machine
16
作者 Chaojun Fan Xinfeng Lai +1 位作者 Haiou Wen Lei Yang 《Geohazard Mechanics》 2023年第4期319-324,共6页
In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data ... In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better. 展开更多
关键词 Coal and gas outburst risk prediction Principal component analysis(PCA) Firefly algorithm(FA) Support vector machine(SVM)
原文传递
海南岛屿病媒生物风险评估 被引量:3
17
作者 王崇财 张治富 +2 位作者 谭伟龙 云小云 潘林奇 《中国国境卫生检疫杂志》 CAS 2019年第3期182-184,共3页
目的探讨海南岛屿病媒生物风险评估方法,为防控病媒生物及其相关疾病提供参考。方法通过查阅文献,收集适合海南岛屿病媒生物风险评估的方法,采用风险矩阵法与专家评估法对海南岛屿病媒生物风险进行评估。结果风险评估主要包括风险识别... 目的探讨海南岛屿病媒生物风险评估方法,为防控病媒生物及其相关疾病提供参考。方法通过查阅文献,收集适合海南岛屿病媒生物风险评估的方法,采用风险矩阵法与专家评估法对海南岛屿病媒生物风险进行评估。结果风险评估主要包括风险识别、风险分析、风险控制和风险评价。通过风险评估,海南岛屿蚊媒传染病传播危险程度处于高风险。结论应依据实际情况,选择合适的风险评估方法,对海南岛屿病媒生物及时开展风险评估,指导海南岛屿病媒生物及其传播的虫媒传染病的防控。 展开更多
关键词 风险评估 病媒生物 风险识别
原文传递
SVD-LSSVM and its application in chemical pattern classification 被引量:2
18
作者 TAO Shao-hui CHEN De-zhao HU Wang-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1942-1947,共6页
Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin... Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation. 展开更多
关键词 Pattern classification Structural risk minimization Least squares support vector machine (LSSVM) Hyper pa-rameter selection Cross validation Singular value decomposition (SVD)
下载PDF
国境卫生病媒生物防控信息化处理研究 被引量:2
19
作者 王涛 徐世文 徐晓霞 《计算机时代》 2016年第2期72-74,78,共4页
面对全球经济一体化的加速发展,我国对出入境人员的边境卫生检疫工作面临着巨大挑战,而信息化无疑是应对这一挑战的有力武器。研究了口岸卫生检疫风险监测预警决策系统需求、病媒生物本底调查子模块的开发原则、系统业务流程、系统功能... 面对全球经济一体化的加速发展,我国对出入境人员的边境卫生检疫工作面临着巨大挑战,而信息化无疑是应对这一挑战的有力武器。研究了口岸卫生检疫风险监测预警决策系统需求、病媒生物本底调查子模块的开发原则、系统业务流程、系统功能、模块特色等,来对口岸卫生检疫工作的信息化展开分析、探讨,旨在以公共卫生风险防控为核心来构建系统。 展开更多
关键词 口岸卫生检疫 风险监测 医学病媒生物 防控信息化处理
下载PDF
模糊评判分析模型在危重症患儿医疗器械压力性损伤控制管理中的价值研究 被引量:1
20
作者 韩艳 任翼 +2 位作者 黄善文 庄春雨 黄小娟 《中国医学装备》 2022年第12期122-126,共5页
目的:基于模糊评判分析模型构建医疗器械相关压力性损伤(MDRPI)控制管理路径,探讨其在重症患儿诊疗中的应用价值。方法:选取医院儿科重症监护病房(PICU)接治的150例患儿,采用数表法将其随机分为对照组和观察组,每组75例,对照组采用医护... 目的:基于模糊评判分析模型构建医疗器械相关压力性损伤(MDRPI)控制管理路径,探讨其在重症患儿诊疗中的应用价值。方法:选取医院儿科重症监护病房(PICU)接治的150例患儿,采用数表法将其随机分为对照组和观察组,每组75例,对照组采用医护协同评估模型;观察组采用糊评判分析模型进行医疗器械压力性损伤危险因素损伤程度分型预测,参照模糊评判结果制定阶段式护理干预和质量控制管理路径。对比两组压力性损伤发生频率、严重程度和医疗器械运行质量的差异。结果:观察组患儿使用呼吸器械、监护器械、输液器械及供氧器械后的压力性损伤发生率低于对照组,差异有统计学意义(x^(2)=5.903,x^(2)=6.641,x^(2)=4.038,x^(2)=6.334;P<0.05);观察组非严重损伤比例高于对照组,严重损伤比例低于对照组,差异有统计学意义(x^(2)=7.130,x^(2)=7.519;P<0.05);观察组患儿诊疗中使用医疗器械的操作规范度、固定舒适度和压力可控度高于对照组,材质敏感度低于对照组,差异有统计学意义(t=3.228,t=4.899,t=3.010,t=4.322;P<0.05)。结论:基于模糊评判模型的医疗器械压力性损伤控制管理路径,能够准确预测损伤风险等级,降低损伤发生概率和危害程度,提升医疗器械临床服务质量。 展开更多
关键词 医疗器械相关压力性损伤(MDRPI) 模糊评判 风险因素 权重向量 质量控制
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部