The paper discusses the framework for a risk-informed root cause analysis process.Such process enables scaling of the analysis performed based on the risk associated with the undesired event or condition,thereby creat...The paper discusses the framework for a risk-informed root cause analysis process.Such process enables scaling of the analysis performed based on the risk associated with the undesired event or condition,thereby creating tiers of analysis where the greater the risk,the more sophisticated the analysis.In a risk-informed root cause analysis process,a situation is normally not analyzed at a level less than what actually occurred.However,a situation may be investigated as though the consequence were greater than actually happened,especially if only slight differences in circumstances could result in a significantly higher consequence.While operational events or safety issues are normally expected to result only with negligible or marginal actual consequences,many of those would actually have certain potential to develop or propagate into catastrophic events.This potential can be expressed qualitatively or quantitatively.Risk-informing of root cause analysis relies on mapping the event or safety issue into a risk matrix which,traditionally,is a two-dimensional probability-consequence matrix.A new concept employed in the risk matrix for root cause analysis is that,while the probability reflects the observed or expected range of values(retaining,thus,its“traditional”meaning),the consequence reflects not only the observed or materialized impact(such as failure of equipment)but,also,its potential to propagate or develop into highly undesirable final state.The paper presents main elements of risk-informed root cause analysis process and discusses qualitative and quantitative aspects and approaches to determination of risk significance of operational events or safety issues.展开更多
Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in d...Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.展开更多
文摘The paper discusses the framework for a risk-informed root cause analysis process.Such process enables scaling of the analysis performed based on the risk associated with the undesired event or condition,thereby creating tiers of analysis where the greater the risk,the more sophisticated the analysis.In a risk-informed root cause analysis process,a situation is normally not analyzed at a level less than what actually occurred.However,a situation may be investigated as though the consequence were greater than actually happened,especially if only slight differences in circumstances could result in a significantly higher consequence.While operational events or safety issues are normally expected to result only with negligible or marginal actual consequences,many of those would actually have certain potential to develop or propagate into catastrophic events.This potential can be expressed qualitatively or quantitatively.Risk-informing of root cause analysis relies on mapping the event or safety issue into a risk matrix which,traditionally,is a two-dimensional probability-consequence matrix.A new concept employed in the risk matrix for root cause analysis is that,while the probability reflects the observed or expected range of values(retaining,thus,its“traditional”meaning),the consequence reflects not only the observed or materialized impact(such as failure of equipment)but,also,its potential to propagate or develop into highly undesirable final state.The paper presents main elements of risk-informed root cause analysis process and discusses qualitative and quantitative aspects and approaches to determination of risk significance of operational events or safety issues.
文摘Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.