In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was ...Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.展开更多
The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerica...The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerical simulation is based on the ten components surrogate model of kerosene and the Reynolds average method combined with the re-normalized group(RNG)k-εturbulence model.The turbulent vortex structures and heat transfer characteristics of kerosene flowing over rectangular ribs of different heights are obtained.The results show that three dimensional vortices are generated by the ribs,and the vortices alter local flow significantly,leading to both enhanced and reduced convective heat transfer at different locations near the ribs.In addition,it is found that with the increase of rib height,the average Nusselt number and the wall friction factor on the ribbed wall also increase.For the present study,the maximum heat transfer enhancement rate of kerosene flow is 72.16%,and the ratio of rib-to-duct height is 0.75.展开更多
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金Sponsored by the Western Communication Construction and Science & Technological Project(Grant No.200431882021)the National Science Fundfor Distinguished Young Scholars (Grant No.50525823)
文摘Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072351 and 11872367).
文摘The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerical simulation is based on the ten components surrogate model of kerosene and the Reynolds average method combined with the re-normalized group(RNG)k-εturbulence model.The turbulent vortex structures and heat transfer characteristics of kerosene flowing over rectangular ribs of different heights are obtained.The results show that three dimensional vortices are generated by the ribs,and the vortices alter local flow significantly,leading to both enhanced and reduced convective heat transfer at different locations near the ribs.In addition,it is found that with the increase of rib height,the average Nusselt number and the wall friction factor on the ribbed wall also increase.For the present study,the maximum heat transfer enhancement rate of kerosene flow is 72.16%,and the ratio of rib-to-duct height is 0.75.