In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamo...In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.展开更多
The Eastern Kunlun Mt. had been subjected to uplift together with the Qinghai-Xizang (Tibet) Plateau before the Early Pleistocene, and yet the Mt. did not protrude out of the Plateau surface. During that period lakes ...The Eastern Kunlun Mt. had been subjected to uplift together with the Qinghai-Xizang (Tibet) Plateau before the Early Pleistocene, and yet the Mt. did not protrude out of the Plateau surface. During that period lakes spread all over the studied region, with the drainage systems being all short rivers flowing into the lakes. At the end of the Early Pleistocene, intensive tectonic uplift led to the rising of the Eastern Kunlun Mt. and made the Mt. protrude onto the Plateau surface. As a result, a fault depression valley formed extending nearly from west to east along the fault belt of the Southern Kunlun Mt. Lakes in this region died out, surface runoffs joined into the valley of the Southern Kunlun Mt. resulting in a large river streaming nearly from west to east. Around 150 kaBP, because of the strong differential movement, rivers, such as the Jialu River and the Golmud River, retrogressively eroded seriously, cutting through the Burhan Budai Mt. Then they pirated the large river and divided it into展开更多
Retrogressive thaw slumps(RTSs)caused by the thawing of ground ice on permafrost slopes have dramatically increased and become a common permafrost hazard across the Northern Hemisphere during previous decades.However,...Retrogressive thaw slumps(RTSs)caused by the thawing of ground ice on permafrost slopes have dramatically increased and become a common permafrost hazard across the Northern Hemisphere during previous decades.However,a gap remains in our comprehensive understanding of the spatial controlling factors,including the climate and terrain,that are conducive to these RTSs at a global scale.Using machine learning methodologies,we mapped the current and future RTSs susceptibility distributions by incorporating a range of environmental factors and RTSs inventories.We identified freezing-degree days and maximum summer rainfall as the primary environmental factors affecting RTSs susceptibility.The final ensemble susceptibility map suggests that regions with high to very high susceptibility could constitute(11.6±0.78)%of the Northern Hemisphere's permafrost region.When juxtaposed with the current(2000-2020)RTSs susceptibility map,the total area with high to very high susceptibility could witness an increase ranging from(31.7±0.65)%(SSP585)to(51.9±0.73)%(SSP126)by the 2041-2060.The insights gleaned from this study not only offer valuable implications for engineering applications across the Northern Hemisphere,but also provide a long-term insight into the potential change of RTSs in permafrost regions in response to climate change.展开更多
Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the pheno...Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides.展开更多
The channel at the estuary of the Weihe River to the Huanghe (Yellow) River has changed markedly since the 1970s. The Huanghe River has swung westwards about 5km and there was retrogressive deposition along the Weihe ...The channel at the estuary of the Weihe River to the Huanghe (Yellow) River has changed markedly since the 1970s. The Huanghe River has swung westwards about 5km and there was retrogressive deposition along the Weihe River. The mechanism and effect of channel evolution at the entrance of the Weihe River to the Huanghe River was analyzed with the survey data, historical statistic data and Landsat TM images of 1987 and 2002. Following conclusions were reached: 1) Physiognomy factors at the entrance, irrigation project and integrated environment evolvement in the Weihe River basin are the main factors for channel evolution at the entrance of the Weihe River to the Huanghe River. 2) The channel evolution not only reduces the ability of controling flood in the lower reaches of the Weihe River due to shrinking of the riverbed, but also increases the flood threat in the lower reaches of the Weihe River because the Huanghe River water inversely flows into the Weihe River. And there is a complexion of small flux, high water level and big disaster, which leads to the expansion of the alkali-saline cropland in the conflux area of the two rivers. 3) The regionalism and local protection must be broken to implement the integrated planning of the watershed and to decline the height of Tongguan to stabilize the physiognomy at the estuary.展开更多
Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extens...Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.展开更多
Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst feature...Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst features caused by rapid degradation of ice rich permafrost,which transforms landforms and threatens infrastructures,and even affects the terrestrial carbon cycle.In this work,vegetation communities surrounding a RTS in the Fenghuoshan Mountains of the interior portion of the Qinghai-Tibet Plateau have been investigated to examine the impact from RTS.This investigation indicates that the occurrence of RTS influences the vegetation community by altering their habitats,especially the soil water content,which forces the vegetation community to evolve in order to adapt to the alterations.In the interior part of RTS where it has been disturbed tremendously,alterations have produced a wider niche and richer plant species.This favors species of a wet environment in a habitat where it was a relatively dry environment of alpine steppe prior to the occurrence of RTS.This study adds to limited observations regarding the impact of RTS to vegetation community on the QTP and helps us to reach a broader understanding of the effects of permafrost degradation as well as global warming.展开更多
Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landfor...Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landforms in permafrost areas,which can result in the instability of landscape and ecosystem.However,the spatiotemporal characteristics of surface deformation of RTSs are still unclear,and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed.In this study,we applied a multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR)method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021.The deformation rates of RTSs ranged from−35 to 20 mm/year,and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs:stable,abrupt thaw,and linear subsidence.A total of 375 RTSs were identifed in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images.Among them,76 RTSs were newly developed,and 26%more than the inventory derived from the optical images alone.This study demonstrated that the combination of InSAR-derived deformation with optical images has signifcant potential for detecting RTSs with high accuracy and efciency at the regional scale.展开更多
Retrogressive thaw slumps(RTSs),which frequently occur in permafrost regions of the Qinghai-Tibet Plateau(QTP),China,can cause signifcant damage to the local surface,resulting in material losses and posing a threat to...Retrogressive thaw slumps(RTSs),which frequently occur in permafrost regions of the Qinghai-Tibet Plateau(QTP),China,can cause signifcant damage to the local surface,resulting in material losses and posing a threat to infrastructure and ecosystems in the region.However,quantitative assessment of ground ice ablation and hydrological ecosystem response was limited due to a lack of understanding of the complex hydro-thermal process during RTS development.In this study,we developed a three-dimensional hydro-thermal coupled numerical model of a RTS in the permafrost terrain at the Beilu River Basin of the QTP,including ice–water phase transitions,heat exchange,mass transport,and the parameterized exchange of heat between the active layer and air.Based on the calibrated hydro-thermal model and combined with the electrical resistivity tomography survey and sample analysis results,a method for estimating the melting of ground ice was proposed.Simulation results indicate that the model efectively refects the factual hydro-thermal regime of the RTS and can evaluate the ground ice ablation and total suspended sediment variation,represented by turbidity.Between 2011 and 2021,the maximum simulated ground ice ablation was in 2016 within the slump region,amounting to a total of 492 m^(3),and it induced the reciprocal evolution,especially in the headwall of the RTS.High ponding depression water turbidity values of 28 and 49 occurred in the thawing season in 2021.The simulated ground ice ablation and turbidity events were highly correlated with climatic warming and wetting.The results ofer a valuable approach to assessing the efects of RTS on infrastructure and the environment,especially in the context of a changing climate.展开更多
The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogit...The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.展开更多
A wealth of retrogressive microstructures have been discovered from the UHP metamorphic rocks in Dabie orogenic belt, namely, the ultrahigh-pressure (URP) eclogites, jadeite quartzites and kyanite-zoisite-quartz vein....A wealth of retrogressive microstructures have been discovered from the UHP metamorphic rocks in Dabie orogenic belt, namely, the ultrahigh-pressure (URP) eclogites, jadeite quartzites and kyanite-zoisite-quartz vein. The most important are pseudomorphic replacements of UHP minerals like coesite, the corona reaction textures iuduced by solid-solid reactions as well as the corona and symplectites induced by reactions involving fluid. According to the textural relationships the sequence of mineral Paragenesis and the metamorphic stages in the UHP eclogites can be delineated; the mineral geobarothermometry of the various stages of retrograde metamorphism is studied and a clockwise, nearly isothermal decompressive metamorphic PT-trajectory for the UHP eclogites can be reconstructed. In terms of the PT-trajectory the two stage post collision uplirt and exhumation processes are reflected. When the UHP metumorphic rocks extruded to the lower-middle crust partial melting happened which bad in turn caused tke crustal extension and the further exhumation or the UHP metomorphic rocks. Based on the field strain analysis combined with geochronological data a scenario or post collision uplift aud exhumation model is presented.展开更多
The Tongbai Dabieshan high pressure (HP) and ultrahigh pressure (UHP) belt is sandwiched between the Yangtze and the Sinokorean cratons. It connects the Qinling orogenic belt in the west and links toward the east...The Tongbai Dabieshan high pressure (HP) and ultrahigh pressure (UHP) belt is sandwiched between the Yangtze and the Sinokorean cratons. It connects the Qinling orogenic belt in the west and links toward the east to the Sulu ultrahigh pressure (UHP) belt. At present there is a consensus that the UHP metamorphic rocks are the products of the oblique collision between the Yangtze and Sinokorean cratons during the Triassic. However, there is still a lot of controversies about the formation and exhumation of the HP and UHP metamorphic belts. The present research work on the composition and the structural geometry and kinetics of the HP and UHP metamorphic belt has shown the following new results: (1) The overall structural geometry pattern of Dabieshan is similar to the metamorphic core complex developed in the western North America; (2) The discoveries of HP and UHP metamorphic rocks in the north of Dabieshan indicate that the significance of Shuihou Wuhe fault should be re evaluated; (3) A series of micro structural evidence, including the newly found retrograde granulite facies assemblages in the garnet pyroxenites, substantiate the extensional processes following the collision event; (4) The discovery of partial melting phenomena in the UHP metamorphic belts illuminates the relationship between the HP and UHP metamorphic rocks and their associated granite gneiss. All of these new findings will greatly improve our understanding of the formation and exhumation of the high pressure and ultrahigh pressure metamorphic belts.展开更多
-On the basis of the data obtained from the investigations on some rivers in China and Australia, the author discusses the spatial and temporal changes of various portions of fluvial-estuarine system during postglacia...-On the basis of the data obtained from the investigations on some rivers in China and Australia, the author discusses the spatial and temporal changes of various portions of fluvial-estuarine system during postglacial sea-level rising in present coastal and deltaic areas. The evolution of a fluvial-estuarine system can be divided into four development stages: early transgression, late transgression, stationary and regression. Early transgression brought about filling-in of the paleo-valley formed in low stand of sea level. In response to late transgression the estuaries were created, during the stationary stage the big swamp was developed. The regression led to estuaries to be filled with sediments and then became deltas. At the same locality the fluvial-estuarine system changed with time. In the transgressive period the lower reach of a river changed into an estuary, and then became nearshore area. In the regressive period the nearshore area changed into an estuary , and then became delta.展开更多
The purpose of the study was to investigate and illustrate the challenges faced by performers and audiences during Ateso oral narratives in Ateso speaking communities in Uganda. The study used ethnographic and discurs...The purpose of the study was to investigate and illustrate the challenges faced by performers and audiences during Ateso oral narratives in Ateso speaking communities in Uganda. The study used ethnographic and discurssive analyses methods of research. The topic was Audience-Performer Interface as a Battlefield of Expression: A Study of Ateso Oral Narratives. Ethnographic method of study was used in Ateso speaking communities of Serere, Ngora, Bukedea and Pallisa districts of Uganda. The author stayed with communities for four to seven days in 2009, 2010 and 2011. The study analysed the interpretational dimensions of the oral narrative episodes. Questionnaires and focused group discussions were used to solicit data from a total of 20 (33.3%) out of 60 persons. The study saw that there was dire need to revive the cultural media of communication in Teso. In Serere, Bukedea and Ngora there was more of unpleasant intrusion than in Pallisa and Serere. Performers should consider their audiences complementary to the narration and establish rapport. Audiences should appreciate the efforts of the narrators to keep the cultural norm of story-telling alive in Teso. The Ministry of Education and Sports in Uganda should encourage local languages at all levels of education.展开更多
The continental marginal extension concept developed by Chinese geologists recently may be applied to the explanation about the Cenozoic extension and divergent movement of the Eastern Asian continental margin. From t...The continental marginal extension concept developed by Chinese geologists recently may be applied to the explanation about the Cenozoic extension and divergent movement of the Eastern Asian continental margin. From the viewpoint of continental marginal extension, this paper discusses the deep tectonothermal mechanism of the tectonic extension of the Eastern Asian continental margin.The Eastern Asian continental margin is an extensional belt with intensive magmatism and structural deformation, geophysically characterized by continual earthquakes and obvious geothermal anomaly.Seismic tomographical results about the Eastern Asian continental margin imply that the Pacific Plate is subducted toward the Eurasian Plate at a low angle and the diving Pacific Plate lies on the surface of the 670-km phase transitional zone. We interpret this feature to be resulted from retrogressive subduction followed by continental marginal extension. Our thermal modeling and geodynamical computation results suggest that the retrogressive subduction occurred at about 76Ma and the withdrawal of the trench served to supply the volume for the continental growth, which led to the formation of the growing front of the Eastern Asian continental margin. The growth width of the Eastern Asian continental margin is about 700 km.展开更多
文摘In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.
文摘The Eastern Kunlun Mt. had been subjected to uplift together with the Qinghai-Xizang (Tibet) Plateau before the Early Pleistocene, and yet the Mt. did not protrude out of the Plateau surface. During that period lakes spread all over the studied region, with the drainage systems being all short rivers flowing into the lakes. At the end of the Early Pleistocene, intensive tectonic uplift led to the rising of the Eastern Kunlun Mt. and made the Mt. protrude onto the Plateau surface. As a result, a fault depression valley formed extending nearly from west to east along the fault belt of the Southern Kunlun Mt. Lakes in this region died out, surface runoffs joined into the valley of the Southern Kunlun Mt. resulting in a large river streaming nearly from west to east. Around 150 kaBP, because of the strong differential movement, rivers, such as the Jialu River and the Golmud River, retrogressively eroded seriously, cutting through the Burhan Budai Mt. Then they pirated the large river and divided it into
基金This study was jointly supported by the National Science Foundation of China(42071097 and 42372334)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0905)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020421)the Program of China State Railway Group Co.Ltd.(K2022G017).
文摘Retrogressive thaw slumps(RTSs)caused by the thawing of ground ice on permafrost slopes have dramatically increased and become a common permafrost hazard across the Northern Hemisphere during previous decades.However,a gap remains in our comprehensive understanding of the spatial controlling factors,including the climate and terrain,that are conducive to these RTSs at a global scale.Using machine learning methodologies,we mapped the current and future RTSs susceptibility distributions by incorporating a range of environmental factors and RTSs inventories.We identified freezing-degree days and maximum summer rainfall as the primary environmental factors affecting RTSs susceptibility.The final ensemble susceptibility map suggests that regions with high to very high susceptibility could constitute(11.6±0.78)%of the Northern Hemisphere's permafrost region.When juxtaposed with the current(2000-2020)RTSs susceptibility map,the total area with high to very high susceptibility could witness an increase ranging from(31.7±0.65)%(SSP585)to(51.9±0.73)%(SSP126)by the 2041-2060.The insights gleaned from this study not only offer valuable implications for engineering applications across the Northern Hemisphere,but also provide a long-term insight into the potential change of RTSs in permafrost regions in response to climate change.
基金supported by the National Basic Research Program of China(Grant No.2014CB44701)the National Natural Science Foundation of China(NSFC)(Grants No.41272283,40902080,41130753)
文摘Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides.
基金Under the auspices of the National Natural Science Foundation of China (No. 40501077), Open Foundation of KeyLaboratory of Western China's Environmental Systems of Ministry of Education, Foundation of Key Laboratory of Shaanxi Province(No. 02JS38)
文摘The channel at the estuary of the Weihe River to the Huanghe (Yellow) River has changed markedly since the 1970s. The Huanghe River has swung westwards about 5km and there was retrogressive deposition along the Weihe River. The mechanism and effect of channel evolution at the entrance of the Weihe River to the Huanghe River was analyzed with the survey data, historical statistic data and Landsat TM images of 1987 and 2002. Following conclusions were reached: 1) Physiognomy factors at the entrance, irrigation project and integrated environment evolvement in the Weihe River basin are the main factors for channel evolution at the entrance of the Weihe River to the Huanghe River. 2) The channel evolution not only reduces the ability of controling flood in the lower reaches of the Weihe River due to shrinking of the riverbed, but also increases the flood threat in the lower reaches of the Weihe River because the Huanghe River water inversely flows into the Weihe River. And there is a complexion of small flux, high water level and big disaster, which leads to the expansion of the alkali-saline cropland in the conflux area of the two rivers. 3) The regionalism and local protection must be broken to implement the integrated planning of the watershed and to decline the height of Tongguan to stabilize the physiognomy at the estuary.
基金funded by the National Natural Science Foundation of China(42372334)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G05)。
文摘Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2021QZKK0201)the State Key Laboratory of Frozen Soil Engineering Funds (SKLFSE-ZT-202109)the fund of Qinghai Provincial Investigation Project“Study on permafrost degradation and its geological hazard effect” (E1490604).
文摘Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst features caused by rapid degradation of ice rich permafrost,which transforms landforms and threatens infrastructures,and even affects the terrestrial carbon cycle.In this work,vegetation communities surrounding a RTS in the Fenghuoshan Mountains of the interior portion of the Qinghai-Tibet Plateau have been investigated to examine the impact from RTS.This investigation indicates that the occurrence of RTS influences the vegetation community by altering their habitats,especially the soil water content,which forces the vegetation community to evolve in order to adapt to the alterations.In the interior part of RTS where it has been disturbed tremendously,alterations have produced a wider niche and richer plant species.This favors species of a wet environment in a habitat where it was a relatively dry environment of alpine steppe prior to the occurrence of RTS.This study adds to limited observations regarding the impact of RTS to vegetation community on the QTP and helps us to reach a broader understanding of the effects of permafrost degradation as well as global warming.
基金funded by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070104)+1 种基金the National Natural Science Foundation of China(Grant Nos.42174046 and 42171443)the National Key R&D Program of China(Grant No.2017YFA0603103).
文摘Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landforms in permafrost areas,which can result in the instability of landscape and ecosystem.However,the spatiotemporal characteristics of surface deformation of RTSs are still unclear,and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed.In this study,we applied a multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR)method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021.The deformation rates of RTSs ranged from−35 to 20 mm/year,and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs:stable,abrupt thaw,and linear subsidence.A total of 375 RTSs were identifed in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images.Among them,76 RTSs were newly developed,and 26%more than the inventory derived from the optical images alone.This study demonstrated that the combination of InSAR-derived deformation with optical images has signifcant potential for detecting RTSs with high accuracy and efciency at the regional scale.
基金supported by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905)the National Science Foundation of China(Grant Nos.42161160328 and 42071097)+2 种基金the Research and Development Project of China National Railway Group Co.,Ltd.(K2022G017)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(2021B1212040003)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020421).
文摘Retrogressive thaw slumps(RTSs),which frequently occur in permafrost regions of the Qinghai-Tibet Plateau(QTP),China,can cause signifcant damage to the local surface,resulting in material losses and posing a threat to infrastructure and ecosystems in the region.However,quantitative assessment of ground ice ablation and hydrological ecosystem response was limited due to a lack of understanding of the complex hydro-thermal process during RTS development.In this study,we developed a three-dimensional hydro-thermal coupled numerical model of a RTS in the permafrost terrain at the Beilu River Basin of the QTP,including ice–water phase transitions,heat exchange,mass transport,and the parameterized exchange of heat between the active layer and air.Based on the calibrated hydro-thermal model and combined with the electrical resistivity tomography survey and sample analysis results,a method for estimating the melting of ground ice was proposed.Simulation results indicate that the model efectively refects the factual hydro-thermal regime of the RTS and can evaluate the ground ice ablation and total suspended sediment variation,represented by turbidity.Between 2011 and 2021,the maximum simulated ground ice ablation was in 2016 within the slump region,amounting to a total of 492 m^(3),and it induced the reciprocal evolution,especially in the headwall of the RTS.High ponding depression water turbidity values of 28 and 49 occurred in the thawing season in 2021.The simulated ground ice ablation and turbidity events were highly correlated with climatic warming and wetting.The results ofer a valuable approach to assessing the efects of RTS on infrastructure and the environment,especially in the context of a changing climate.
文摘The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.
文摘A wealth of retrogressive microstructures have been discovered from the UHP metamorphic rocks in Dabie orogenic belt, namely, the ultrahigh-pressure (URP) eclogites, jadeite quartzites and kyanite-zoisite-quartz vein. The most important are pseudomorphic replacements of UHP minerals like coesite, the corona reaction textures iuduced by solid-solid reactions as well as the corona and symplectites induced by reactions involving fluid. According to the textural relationships the sequence of mineral Paragenesis and the metamorphic stages in the UHP eclogites can be delineated; the mineral geobarothermometry of the various stages of retrograde metamorphism is studied and a clockwise, nearly isothermal decompressive metamorphic PT-trajectory for the UHP eclogites can be reconstructed. In terms of the PT-trajectory the two stage post collision uplirt and exhumation processes are reflected. When the UHP metumorphic rocks extruded to the lower-middle crust partial melting happened which bad in turn caused tke crustal extension and the further exhumation or the UHP metomorphic rocks. Based on the field strain analysis combined with geochronological data a scenario or post collision uplift aud exhumation model is presented.
基金The study is supportd by the National Natural Science Foundation of China( Nos.497940 41and49772 14 6) and MGMR( No.95 0 110 2)
文摘The Tongbai Dabieshan high pressure (HP) and ultrahigh pressure (UHP) belt is sandwiched between the Yangtze and the Sinokorean cratons. It connects the Qinling orogenic belt in the west and links toward the east to the Sulu ultrahigh pressure (UHP) belt. At present there is a consensus that the UHP metamorphic rocks are the products of the oblique collision between the Yangtze and Sinokorean cratons during the Triassic. However, there is still a lot of controversies about the formation and exhumation of the HP and UHP metamorphic belts. The present research work on the composition and the structural geometry and kinetics of the HP and UHP metamorphic belt has shown the following new results: (1) The overall structural geometry pattern of Dabieshan is similar to the metamorphic core complex developed in the western North America; (2) The discoveries of HP and UHP metamorphic rocks in the north of Dabieshan indicate that the significance of Shuihou Wuhe fault should be re evaluated; (3) A series of micro structural evidence, including the newly found retrograde granulite facies assemblages in the garnet pyroxenites, substantiate the extensional processes following the collision event; (4) The discovery of partial melting phenomena in the UHP metamorphic belts illuminates the relationship between the HP and UHP metamorphic rocks and their associated granite gneiss. All of these new findings will greatly improve our understanding of the formation and exhumation of the high pressure and ultrahigh pressure metamorphic belts.
文摘-On the basis of the data obtained from the investigations on some rivers in China and Australia, the author discusses the spatial and temporal changes of various portions of fluvial-estuarine system during postglacial sea-level rising in present coastal and deltaic areas. The evolution of a fluvial-estuarine system can be divided into four development stages: early transgression, late transgression, stationary and regression. Early transgression brought about filling-in of the paleo-valley formed in low stand of sea level. In response to late transgression the estuaries were created, during the stationary stage the big swamp was developed. The regression led to estuaries to be filled with sediments and then became deltas. At the same locality the fluvial-estuarine system changed with time. In the transgressive period the lower reach of a river changed into an estuary, and then became nearshore area. In the regressive period the nearshore area changed into an estuary , and then became delta.
文摘The purpose of the study was to investigate and illustrate the challenges faced by performers and audiences during Ateso oral narratives in Ateso speaking communities in Uganda. The study used ethnographic and discurssive analyses methods of research. The topic was Audience-Performer Interface as a Battlefield of Expression: A Study of Ateso Oral Narratives. Ethnographic method of study was used in Ateso speaking communities of Serere, Ngora, Bukedea and Pallisa districts of Uganda. The author stayed with communities for four to seven days in 2009, 2010 and 2011. The study analysed the interpretational dimensions of the oral narrative episodes. Questionnaires and focused group discussions were used to solicit data from a total of 20 (33.3%) out of 60 persons. The study saw that there was dire need to revive the cultural media of communication in Teso. In Serere, Bukedea and Ngora there was more of unpleasant intrusion than in Pallisa and Serere. Performers should consider their audiences complementary to the narration and establish rapport. Audiences should appreciate the efforts of the narrators to keep the cultural norm of story-telling alive in Teso. The Ministry of Education and Sports in Uganda should encourage local languages at all levels of education.
基金supported by China National Natural Science Foundation(Grants No.40074022 and No.40174027)the“973”State Key Basic Research and Development Planning Program(Grant No.G200004670401)
文摘The continental marginal extension concept developed by Chinese geologists recently may be applied to the explanation about the Cenozoic extension and divergent movement of the Eastern Asian continental margin. From the viewpoint of continental marginal extension, this paper discusses the deep tectonothermal mechanism of the tectonic extension of the Eastern Asian continental margin.The Eastern Asian continental margin is an extensional belt with intensive magmatism and structural deformation, geophysically characterized by continual earthquakes and obvious geothermal anomaly.Seismic tomographical results about the Eastern Asian continental margin imply that the Pacific Plate is subducted toward the Eurasian Plate at a low angle and the diving Pacific Plate lies on the surface of the 670-km phase transitional zone. We interpret this feature to be resulted from retrogressive subduction followed by continental marginal extension. Our thermal modeling and geodynamical computation results suggest that the retrogressive subduction occurred at about 76Ma and the withdrawal of the trench served to supply the volume for the continental growth, which led to the formation of the growing front of the Eastern Asian continental margin. The growth width of the Eastern Asian continental margin is about 700 km.