为了优化标准化工作流程,提高标准化工作效率,推动标准数字化发展,介绍了大语言模型(Large Language Model,LLM)在智能问答中的演进与创新,利用大语言模型和检索增强生成(Retrieval-Augmented Generation,RAG)技术,构建了一个标准文献...为了优化标准化工作流程,提高标准化工作效率,推动标准数字化发展,介绍了大语言模型(Large Language Model,LLM)在智能问答中的演进与创新,利用大语言模型和检索增强生成(Retrieval-Augmented Generation,RAG)技术,构建了一个标准文献智能问答解决方案,可通过对标准文档的深入理解和智能化处理,实现对复杂标准问题的准确回答,从而增强标准文献的应用价值和实际效益。展开更多
在人工智能领域的不断进化中,大语言模型(Large Language Model,LLM)应用成了当前的热点和前沿技术之一。过去几年中,检索增强生成(Retrieval-Augmented Generation,RAG)技术的快速发展为LLM带来了新的发展机遇。RAG技术通过结合强大的...在人工智能领域的不断进化中,大语言模型(Large Language Model,LLM)应用成了当前的热点和前沿技术之一。过去几年中,检索增强生成(Retrieval-Augmented Generation,RAG)技术的快速发展为LLM带来了新的发展机遇。RAG技术通过结合强大的语言模型与信息检索系统,在复杂的问题解决和信息处理任务中提供更加精确和深入的答案,并且不断优化和扩展其应用范围。文章基于LLM应用研究,结合RAG技术和智能化知识平台,探索了LLM在强度智能化知识管理中的应用,为企业的创新研发和产品设计提供更加智能化、高效、准确的支持。展开更多
随着近年电池领域研究投入的激增,研究人员面临着前所未有的信息过载和知识盲区的挑战。针对这一问题,本文探讨了大语言模型(large language model,LLM)的检索增强生成(retrieval augmented generation,RAG)架构在电池领域的应用潜力,...随着近年电池领域研究投入的激增,研究人员面临着前所未有的信息过载和知识盲区的挑战。针对这一问题,本文探讨了大语言模型(large language model,LLM)的检索增强生成(retrieval augmented generation,RAG)架构在电池领域的应用潜力,在此基础上对近期的研究文献进行综述,并提出展望。本文介绍了大语言模型RAG架构的工作原理,强调了该架构在垂直领域的可靠性,并基于此综述探讨了该架构在电池材料设计、电池单元设计和制造、电动交通与电网的电池管理系统三个领域的潜在应用。在电池材料设计部分,本文着重分析了大语言模型RAG架构的无幻觉生成能力在数据提取、研究方案设计和多模态数据问答中的优势。在电池单元设计和制造部分,本文从科研端指出该架构对电池单元设计方案分析的辅助作用,从制造端指出该架构桥接产业和科研的鸿沟、辅助产业管控的作用。在电动交通和电网的电池管理系统部分,本文指出该架构在跨领域知识联结、辅助系统级运维的作用。最后,本文讨论了多模态RAG技术在电池研究领域的应用潜力及其对电池研究效率的提升,并展望了RAG在电池领域的更多应用前景。展开更多
文摘为了优化标准化工作流程,提高标准化工作效率,推动标准数字化发展,介绍了大语言模型(Large Language Model,LLM)在智能问答中的演进与创新,利用大语言模型和检索增强生成(Retrieval-Augmented Generation,RAG)技术,构建了一个标准文献智能问答解决方案,可通过对标准文档的深入理解和智能化处理,实现对复杂标准问题的准确回答,从而增强标准文献的应用价值和实际效益。
文摘在人工智能领域的不断进化中,大语言模型(Large Language Model,LLM)应用成了当前的热点和前沿技术之一。过去几年中,检索增强生成(Retrieval-Augmented Generation,RAG)技术的快速发展为LLM带来了新的发展机遇。RAG技术通过结合强大的语言模型与信息检索系统,在复杂的问题解决和信息处理任务中提供更加精确和深入的答案,并且不断优化和扩展其应用范围。文章基于LLM应用研究,结合RAG技术和智能化知识平台,探索了LLM在强度智能化知识管理中的应用,为企业的创新研发和产品设计提供更加智能化、高效、准确的支持。
文摘随着近年电池领域研究投入的激增,研究人员面临着前所未有的信息过载和知识盲区的挑战。针对这一问题,本文探讨了大语言模型(large language model,LLM)的检索增强生成(retrieval augmented generation,RAG)架构在电池领域的应用潜力,在此基础上对近期的研究文献进行综述,并提出展望。本文介绍了大语言模型RAG架构的工作原理,强调了该架构在垂直领域的可靠性,并基于此综述探讨了该架构在电池材料设计、电池单元设计和制造、电动交通与电网的电池管理系统三个领域的潜在应用。在电池材料设计部分,本文着重分析了大语言模型RAG架构的无幻觉生成能力在数据提取、研究方案设计和多模态数据问答中的优势。在电池单元设计和制造部分,本文从科研端指出该架构对电池单元设计方案分析的辅助作用,从制造端指出该架构桥接产业和科研的鸿沟、辅助产业管控的作用。在电动交通和电网的电池管理系统部分,本文指出该架构在跨领域知识联结、辅助系统级运维的作用。最后,本文讨论了多模态RAG技术在电池研究领域的应用潜力及其对电池研究效率的提升,并展望了RAG在电池领域的更多应用前景。