The incorporation of fluid flow through modelled normal and stenosed capillary-tissue exchange system has highlighted issues that may have major applications for the study of diffusion phenomenon. Results clearly demo...The incorporation of fluid flow through modelled normal and stenosed capillary-tissue exchange system has highlighted issues that may have major applications for the study of diffusion phenomenon. Results clearly demonstrate the important roles played by various physiological characteristics and diffusion variables involved in the analysis on blood flow. Assessment of the severity of the disease could be made possible through the variation of a parameter named as retention parameter. An attempt has been made to study the effects of local variation of viscosity on flow, wall-shearing stress and distribution of dissolved material in diseased artery as compared to the normal.展开更多
文摘The incorporation of fluid flow through modelled normal and stenosed capillary-tissue exchange system has highlighted issues that may have major applications for the study of diffusion phenomenon. Results clearly demonstrate the important roles played by various physiological characteristics and diffusion variables involved in the analysis on blood flow. Assessment of the severity of the disease could be made possible through the variation of a parameter named as retention parameter. An attempt has been made to study the effects of local variation of viscosity on flow, wall-shearing stress and distribution of dissolved material in diseased artery as compared to the normal.