Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually inc...Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas. (C) 2014 Baishideng Publishing Group Co., Limited. All rights reserved.展开更多
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes ...The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress, Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mecha- nisms. However, very li2ttle summarization has been done to review their research progress. Not iust important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senes- cence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.展开更多
Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specif...Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions,a response termed thermomorphogenesis.When exposed to chilling or moist chilling low temperatures,flowering or seed germination is accelerated in some plant species;these processes are known as vernalization and cold stratification,respectively.Interestingly,once many temperate plants are exposed to chilling temperatures for some time,they can acquire the ability to resist freezing stress,a process termed cold acclimation.In the face of global climate change,heat stress has emerged as a frequent challenge,which adversely affects plant growth and development.In this review,we summarize and discuss recent progress in dissecting them olecular mechanism sregulating plant thermomorphogenesis,vernalization,and responses to extreme temperatures.We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.展开更多
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a com...Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.展开更多
Along the meridian of 105°E, the Chinese region are divided into two parts, east and west. The results show that in the east part of China the temperate extratropical belt, the warm extratropical belt, and the no...Along the meridian of 105°E, the Chinese region are divided into two parts, east and west. The results show that in the east part of China the temperate extratropical belt, the warm extratropical belt, and the northern subtropical belt shift northward significantly, whereas the middle subtropical belt and the southern subtropical belt have less or no change. As for the northern subtropical belt, the maximal northward shift can reach 3.7 degrees of latitude. As for the warm extratropical belt, along the meridian of 120°-125°E, the maximal northward shift can reach 3-4 degrees. In the west part of China, each climatic belt changes little. Only in the Xinjiang area are the significant northward shifts. Correspondingly, it is found that in the last 50 years the traditional seasons have changed. For Beijing, Hailar, and Lanzhou, in general, summer becomes longer and winter shorter over the last 50 years. Summer begins early and ends late with respect to early 1950s. Contrary to the summer, winter begins late and ends early with respect to early 1950s. Furthermore, spring and autumn have changed over the last 50 years: with respect to early 1950s spring begins early and autumn begins late.展开更多
ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were ...ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.展开更多
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition...As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.展开更多
疫苗和国家免疫规划项目有效地保护了全球人群,特别是儿童的健康,使其免受天花、脊髓灰质炎、麻疹、百日咳等传染病的危害。但伴随预防接种过程发生的疑似预防接种异常反应(Adverse Events Following Immunization,AEFI)引起了公众对疫...疫苗和国家免疫规划项目有效地保护了全球人群,特别是儿童的健康,使其免受天花、脊髓灰质炎、麻疹、百日咳等传染病的危害。但伴随预防接种过程发生的疑似预防接种异常反应(Adverse Events Following Immunization,AEFI)引起了公众对疫苗安全性的关注。这些关注如不能得到妥善处理,可能会威胁到已取得成功的免疫规划项目。在发生AEFI时,采取快速适当应对策略有助于避免其对国家免疫规划项目造成负面影响。展开更多
In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a ...In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.展开更多
基金Supported by Grants from the National Natural Science Foundation of China,No.81270477
文摘Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas. (C) 2014 Baishideng Publishing Group Co., Limited. All rights reserved.
基金supported by the Natural Science Foundation of China(No.31301790)Guangdong Natural Science Foundation (S2013040016220)+1 种基金China Postdoctoral Science Foundation (2013M530375,2014T70827)Shenzhen Vegetable Molecular Biotechnological Engineering Lab Scheme (Development and Reform Commission of Shenzhen Municipal Government)
文摘The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress, Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mecha- nisms. However, very li2ttle summarization has been done to review their research progress. Not iust important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senes- cence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.
基金This work was supported by grants from the Ministry of Agriculture of China for Transgenic Research(2016ZX08009003-002)the National Natural Science Foundation of China(31920103002,31921001)the Beijing Outstanding University Discipline Program.
文摘Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions,a response termed thermomorphogenesis.When exposed to chilling or moist chilling low temperatures,flowering or seed germination is accelerated in some plant species;these processes are known as vernalization and cold stratification,respectively.Interestingly,once many temperate plants are exposed to chilling temperatures for some time,they can acquire the ability to resist freezing stress,a process termed cold acclimation.In the face of global climate change,heat stress has emerged as a frequent challenge,which adversely affects plant growth and development.In this review,we summarize and discuss recent progress in dissecting them olecular mechanism sregulating plant thermomorphogenesis,vernalization,and responses to extreme temperatures.We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
基金supported by the National Key Scientific Research Project(2011CB915400)supported by the National Natural Science Foundation of China(31730007)
文摘Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
基金supported by the National Natural Science Foundation of China(Grant No.40231006)the Key Innovation Project of the Chinese Academy of Sciences(ZKCX2 SW-210,KZCX1-10-07)the National Key Program for De-veloping Basic Sciences(G1999043408).
文摘Along the meridian of 105°E, the Chinese region are divided into two parts, east and west. The results show that in the east part of China the temperate extratropical belt, the warm extratropical belt, and the northern subtropical belt shift northward significantly, whereas the middle subtropical belt and the southern subtropical belt have less or no change. As for the northern subtropical belt, the maximal northward shift can reach 3.7 degrees of latitude. As for the warm extratropical belt, along the meridian of 120°-125°E, the maximal northward shift can reach 3-4 degrees. In the west part of China, each climatic belt changes little. Only in the Xinjiang area are the significant northward shifts. Correspondingly, it is found that in the last 50 years the traditional seasons have changed. For Beijing, Hailar, and Lanzhou, in general, summer becomes longer and winter shorter over the last 50 years. Summer begins early and ends late with respect to early 1950s. Contrary to the summer, winter begins late and ends early with respect to early 1950s. Furthermore, spring and autumn have changed over the last 50 years: with respect to early 1950s spring begins early and autumn begins late.
基金This work was supported by National Key Basic Research and Development Program Grant 2011 CB100700 (to Z.H.) Natural Science Foundation of China Grants 91117018 and 30730064 (to Z.H.)and US Department of Agriculture National Research Initiative Grant 2003-35319-17873 (to Y.Y.). No conflict of interest declared.
文摘ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
基金supported by grants from the United States Department of AgricultureNational Institute of Food and Agriculture (NIFA 201015479+2 种基金 W.J.L.)the National Natural Science Foundation of China (31025022 H.L.)
文摘As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
文摘疫苗和国家免疫规划项目有效地保护了全球人群,特别是儿童的健康,使其免受天花、脊髓灰质炎、麻疹、百日咳等传染病的危害。但伴随预防接种过程发生的疑似预防接种异常反应(Adverse Events Following Immunization,AEFI)引起了公众对疫苗安全性的关注。这些关注如不能得到妥善处理,可能会威胁到已取得成功的免疫规划项目。在发生AEFI时,采取快速适当应对策略有助于避免其对国家免疫规划项目造成负面影响。
基金supported by the National Natural Science Foundation of China (40771019)
文摘In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.