The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux s...In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux system under five typical plant communi- ties (Suaeda glauca (Sg), Chloris virgata (Cv), Puecinellia distans (Pd), Leymus chinensis (Lc) and Phragmites australis (Pa)) and an alkali-spot land (As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO2 effiux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration (Rs) often appeared between 1 1:00 and 13:00, while the minimum occurred at 21:00-23:00 or before dawn. Air temperature near the soil surface (Ta) and soil temperature at 10 cm depth (Tlo) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00-9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 effiux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO2 effiux was close to the soil COz effiux from 15:00 to 17:00 and the mean of 2 individual soil CO2 effiux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO2 fluxes (CO2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO2 fluxes were 0.10-1.55 gmol/(m2.s) and 0.10-0.69 gmol/(m2.s)at the two sites. The results im- plied that alkaline soils could absorb CO2 under natural condition, which might have significant implications to the global carbon budget accounting.展开更多
Soil CO2 efflux,the second largest flux in a forest carbon budget,plays an important role in global carbon cycling.Forest logging is expected to have large effects on soil CO2 efflux and carbon sequestration in forest...Soil CO2 efflux,the second largest flux in a forest carbon budget,plays an important role in global carbon cycling.Forest logging is expected to have large effects on soil CO2 efflux and carbon sequestration in forest ecosystems.However,a comprehensive understanding of soil CO2 efflux dynamics in response to forest logging remains elusive due to large variability in results obtained across individual studies.Here,we used a meta-analysis approach to synthesize the results of 77 individual field studies to determine the impacts of forest logging on soil CO2 efflux.Our results reveal that forest logging significantly stimulated soil CO2 efflux of the growing season by 5.02%.However,averaged across all studies,nonsignificant effect was detected following forest logging.The large variation among forest logging impacts was best explained by forest type,logging type,and time since logging.Soil CO2 efflux in coniferous forests exhibited a significant increase(4.38%)due to forest logging,while mixed and hardwood forests showed no significant change.Logging type also had a significant effect on soil CO2 efflux,with thinning increasing soil CO2 efflux by 12.05%,while clear-cutting decreasing soil CO2 efflux by 8.63%.The time since logging also had variable effects,with higher soil CO2 efflux for 2 years after logging,and lower for 3-6 years after logging;when exceeded 6 years,soil CO2 efflux increased.As significantly negative impacts of forest logging were detected on fine root biomass,the general positive effects on soil CO2 efflux can be explained by the accelerated decomposition of organic matter as a result of elevated soil temperature and organic substrate quality.Our results demonstrate that forest logging had potentially negative effects on carbon sequestration in forest ecosystems.展开更多
Soil respiration(Soil R)is one of the largest CO2fluxes from terrestrial ecosystems to the atmosphere.The largely seasonal and daily patterns of Soil R in semiarid grassland ecosystems indicate that measurement time a...Soil respiration(Soil R)is one of the largest CO2fluxes from terrestrial ecosystems to the atmosphere.The largely seasonal and daily patterns of Soil R in semiarid grassland ecosystems indicate that measurement time and frequency would have significant influences on the assessment of seasonal soil carbon release.Based on a three-year continuous measurement of Soil R in a semiarid grassland,we found that the Soil R value measured at around 10:00 o’clock local time was the closest to its daily mean,while the value at 14:00 o’clock was found to be the highest daily rate.A measurement frequency higher than every 10 days was necessary for estimating the seasonal Soil R and its temperature sensitivity(Q10)reasonably.Our study would be useful as guidelines for manual Soil R measurements and model data selection in semiarid temperate grasslands.展开更多
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
基金Under the auspices of National Natural Science Foundation of China(No.41501090,41501105)Fundamental Research Funds for Central Universities(No.2412015KJ023)
文摘In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux system under five typical plant communi- ties (Suaeda glauca (Sg), Chloris virgata (Cv), Puecinellia distans (Pd), Leymus chinensis (Lc) and Phragmites australis (Pa)) and an alkali-spot land (As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO2 effiux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration (Rs) often appeared between 1 1:00 and 13:00, while the minimum occurred at 21:00-23:00 or before dawn. Air temperature near the soil surface (Ta) and soil temperature at 10 cm depth (Tlo) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00-9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 effiux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO2 effiux was close to the soil COz effiux from 15:00 to 17:00 and the mean of 2 individual soil CO2 effiux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO2 fluxes (CO2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO2 fluxes were 0.10-1.55 gmol/(m2.s) and 0.10-0.69 gmol/(m2.s)at the two sites. The results im- plied that alkaline soils could absorb CO2 under natural condition, which might have significant implications to the global carbon budget accounting.
基金the National Natural Science Foundation of China(4170129641801069)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23060301)the CAS"Light of West China"Program(29Y829861).
文摘Soil CO2 efflux,the second largest flux in a forest carbon budget,plays an important role in global carbon cycling.Forest logging is expected to have large effects on soil CO2 efflux and carbon sequestration in forest ecosystems.However,a comprehensive understanding of soil CO2 efflux dynamics in response to forest logging remains elusive due to large variability in results obtained across individual studies.Here,we used a meta-analysis approach to synthesize the results of 77 individual field studies to determine the impacts of forest logging on soil CO2 efflux.Our results reveal that forest logging significantly stimulated soil CO2 efflux of the growing season by 5.02%.However,averaged across all studies,nonsignificant effect was detected following forest logging.The large variation among forest logging impacts was best explained by forest type,logging type,and time since logging.Soil CO2 efflux in coniferous forests exhibited a significant increase(4.38%)due to forest logging,while mixed and hardwood forests showed no significant change.Logging type also had a significant effect on soil CO2 efflux,with thinning increasing soil CO2 efflux by 12.05%,while clear-cutting decreasing soil CO2 efflux by 8.63%.The time since logging also had variable effects,with higher soil CO2 efflux for 2 years after logging,and lower for 3-6 years after logging;when exceeded 6 years,soil CO2 efflux increased.As significantly negative impacts of forest logging were detected on fine root biomass,the general positive effects on soil CO2 efflux can be explained by the accelerated decomposition of organic matter as a result of elevated soil temperature and organic substrate quality.Our results demonstrate that forest logging had potentially negative effects on carbon sequestration in forest ecosystems.
基金supported inpart by the‘‘Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues’’of the Chinese Academy of Sciences(XDA05050402)the National Natural Science Foundationof China(31170453)a Selected Young Scientist Program supported by the State Key Laboratory of Vegetation and Environment Change
文摘Soil respiration(Soil R)is one of the largest CO2fluxes from terrestrial ecosystems to the atmosphere.The largely seasonal and daily patterns of Soil R in semiarid grassland ecosystems indicate that measurement time and frequency would have significant influences on the assessment of seasonal soil carbon release.Based on a three-year continuous measurement of Soil R in a semiarid grassland,we found that the Soil R value measured at around 10:00 o’clock local time was the closest to its daily mean,while the value at 14:00 o’clock was found to be the highest daily rate.A measurement frequency higher than every 10 days was necessary for estimating the seasonal Soil R and its temperature sensitivity(Q10)reasonably.Our study would be useful as guidelines for manual Soil R measurements and model data selection in semiarid temperate grasslands.