A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of ...A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10^-13/s at 5 MHz, and the self-calibration resolution can achieve 10^-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10^-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.展开更多
In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution de...In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.60772135 and 10978017)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,Chinese Academy of Sciences (Grant No.2009PNTT10)the Fundamental Research Funds for the Central Universities,China (Grant No.JY10000905015)
文摘A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10^-13/s at 5 MHz, and the self-calibration resolution can achieve 10^-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10^-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.
文摘In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.