铜基氧化物表面的氧化物种可以增强CO_(2)吸附,降低含氧中间体的结合能,从而提高电还原CO_(2)的一步还原产物的产率.鉴于此,在还原过程中,Cu_(2)O上的残留氧通过Sn^(2+)稳定,并且残留氧的保留通过原位拉曼光谱(Cu–O_(ads))得到了证实....铜基氧化物表面的氧化物种可以增强CO_(2)吸附,降低含氧中间体的结合能,从而提高电还原CO_(2)的一步还原产物的产率.鉴于此,在还原过程中,Cu_(2)O上的残留氧通过Sn^(2+)稳定,并且残留氧的保留通过原位拉曼光谱(Cu–O_(ads))得到了证实.同时,原位拉曼光谱和密度泛函理论计算结果证明,由于残留氧的存在,一氧化碳中间体在SnO/Cu_(2)O催化剂的吸附能比Cu_(2)O催化剂明显降低.这使得其在-0.8 V (相对于可逆氢电极)的电位下获得高达97.5%的法拉第效率.铜基氧化物催化剂的氧稳定策略对设计高性能电还原CO_(2)催化剂具有指导意义.展开更多
We have shown in our first articles [1] [2] that even after encapsulation, the first rapid phase of degradation mechanism observed has been attributed to oxidation of interfaces and an alteration of the charges collec...We have shown in our first articles [1] [2] that even after encapsulation, the first rapid phase of degradation mechanism observed has been attributed to oxidation of interfaces and an alteration of the charges collection process. A second phase slower is induced by the oxidation of the active film, namely a decrease in the absorption and a degradation of the charge transport process. We revealed that another decrease in power conversion efficiency which has been induced by a possible interfacial passivation occurred at the organic/cathode interface, owing to the presence of residual oxygen, moisture and other impurities. This is in reality the real cause of the first rapid phase of degradation mechanism observed.展开更多
基金supported by Shenzhen Science and Technology Foundation of Nanshan (K20799112)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (JCYJ20200109141640095)+4 种基金the National Natural Science Foundation of China (21875097)Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (ZDSYS20200421111401738)supported by the National Supercomputer Center in Guangzhouthe National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center)the Center for Computational Science and Engineering at SUSTech。
文摘铜基氧化物表面的氧化物种可以增强CO_(2)吸附,降低含氧中间体的结合能,从而提高电还原CO_(2)的一步还原产物的产率.鉴于此,在还原过程中,Cu_(2)O上的残留氧通过Sn^(2+)稳定,并且残留氧的保留通过原位拉曼光谱(Cu–O_(ads))得到了证实.同时,原位拉曼光谱和密度泛函理论计算结果证明,由于残留氧的存在,一氧化碳中间体在SnO/Cu_(2)O催化剂的吸附能比Cu_(2)O催化剂明显降低.这使得其在-0.8 V (相对于可逆氢电极)的电位下获得高达97.5%的法拉第效率.铜基氧化物催化剂的氧稳定策略对设计高性能电还原CO_(2)催化剂具有指导意义.
文摘We have shown in our first articles [1] [2] that even after encapsulation, the first rapid phase of degradation mechanism observed has been attributed to oxidation of interfaces and an alteration of the charges collection process. A second phase slower is induced by the oxidation of the active film, namely a decrease in the absorption and a degradation of the charge transport process. We revealed that another decrease in power conversion efficiency which has been induced by a possible interfacial passivation occurred at the organic/cathode interface, owing to the presence of residual oxygen, moisture and other impurities. This is in reality the real cause of the first rapid phase of degradation mechanism observed.
文摘目的考察卡巴他赛脂质微球(cabazitaxel lipid microsphere,CTX-LM)注射液容器内残氧量对制剂稳定性的影响,并讨论制剂中药物的降解机制。方法在加速条件下,测定药物含量,制剂粒径、p H值、残氧量、全氧化值等指标。结果残存氧对卡巴他赛固体原料药无降解作用,40、60和80℃加速10 d的含量质量分数分别为99.8%、99.8%和99.9%,残氧量无明显变化;高温条件下卡巴他赛水溶液药物含量质量分数降低至40.4%,但与残存氧无关。对于卡巴他赛脂质微球注射液,高温下低氧组制剂氧化程度小于高氧组,且化学稳定性更好,降解活化能分别为62.6 k J·mol-1和56.1 k J·mol-1。其机制为磷脂的不饱和脂肪酸侧链经残存氧氧化断裂,产生酸性氧化产物使体系p H值下降,加剧了卡巴他赛在弱酸条件的水解,且残存氧越多、温度越高时,药物降解越显著。结论控制容器内残氧量有助于提高卡巴他赛脂质微球注射液的稳定性。