期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向精准目标定位的水面目标检测算法 被引量:1
1
作者 冯辉 郭俊东 徐海祥 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第10期38-43,共6页
为提升水面目标的检测性能,保障智能船舶的航行安全,基于YOLOv3 (you only look once)提出了一种面向精准目标定位的水面目标检测算法.首先,利用残差密集模块改进了YOLOv3的头部网络,让不同特征间能够进行跨越式的信息交互.其次,将头部... 为提升水面目标的检测性能,保障智能船舶的航行安全,基于YOLOv3 (you only look once)提出了一种面向精准目标定位的水面目标检测算法.首先,利用残差密集模块改进了YOLOv3的头部网络,让不同特征间能够进行跨越式的信息交互.其次,将头部网络中的最近邻上采样层替换为了反卷积层,使得网络在训练过程中能够更加自主地学习特征缩放.最后,将普通的学习率衰减策略和余弦退火策略相结合,进一步提升网络的训练效果.利用真实水域下的图像数据对提出的方法进行训练和测试,实验结果表明:提出的方法将水面目标的检测精度提升了4.7%,实现了更加精准的目标定位. 展开更多
关键词 智能船舶 目标检测 精准目标定位 残差密集模块 反卷积
原文传递
基于双通道残差密集网络的红外与可见光图像融合 被引量:1
2
作者 冯鑫 杨杰铭 +1 位作者 张鸿德 邱国航 《光子学报》 EI CAS CSCD 北大核心 2023年第11期278-289,共12页
为改善红外与可见光融合结果与源图像间的部分细节特征丢失问题,充分提取红外与可见光图像中的特征信息,提出了一种改进的双通道深度学习自编码网络进行红外与可见光图像融合。其中,双通道结构由密集连接和残差连接模块级联构成,并设置... 为改善红外与可见光融合结果与源图像间的部分细节特征丢失问题,充分提取红外与可见光图像中的特征信息,提出了一种改进的双通道深度学习自编码网络进行红外与可见光图像融合。其中,双通道结构由密集连接和残差连接模块级联构成,并设置一种综合像素、结构相似度和梯度特征保留的损失函数,使该编码器结构可以充分提取红外与可见光图像的多层次特征,在融合层采用空间L1范数和注意力机制对级联双通道特征分别进行融合,最后设计对应的解码器对融合特征图像进行重构,获取最终的融合结果。通过与传统算法以及近年最新的深度学习算法进行实验对比,结果表明该方法在主观和客观上都具有优秀的综合性能。 展开更多
关键词 红外与可见光图像融合 双通道网络 残差密集模块 注意力机制 自编码器
下载PDF
多尺度沙漏结构的单幅图像去雨算法研究 被引量:2
3
作者 马婧婧 黄煜峰 陈翔 《小型微型计算机系统》 CSCD 北大核心 2021年第3期561-565,共5页
雨天环境会造成图像模糊、变形,大幅降低图像质量,对于后续的图像分析和应用造成严重影响.单幅图像的去雨算法研究成为热点,然而现有算法存在过度平滑、颜色失真和复杂雨水图像复原能力差等诸多问题,去雨问题难以有效解决.本文提出一种... 雨天环境会造成图像模糊、变形,大幅降低图像质量,对于后续的图像分析和应用造成严重影响.单幅图像的去雨算法研究成为热点,然而现有算法存在过度平滑、颜色失真和复杂雨水图像复原能力差等诸多问题,去雨问题难以有效解决.本文提出一种新颖的多尺度沙漏结构的单幅图像去雨算法.首先,针对雨的特征复杂多样的特点,采用多尺度沙漏网络结构,提取并融合多尺度的雨线特征;其次,在沙漏网络内部,引入残差密集模块,使特征在不同级别网络中实现传递和复用,最大限度的提取细节特征和增强网络表达能力;最后,针对雨水不均匀分布的特点,在残差密集网络基础上加入注意模块,提高算法在空间和通道方面特征提取能力,能够处理复杂的雨天图像.实验结果表明,本方法相较于现有算法,能够更好的去除雨线,并且能够最大程度的保留图像细节和颜色信息. 展开更多
关键词 单幅图像去雨 多尺度沙漏网络 残差密集模块 注意力机制
下载PDF
基于空间元学习的放大任意倍的超分辨率重建方法 被引量:1
4
作者 孙忠凡 周正华 赵建伟 《计算机应用》 CSCD 北大核心 2020年第12期3471-3477,共7页
针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐... 针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐标间的对应关系;其次,在元学习网络的基础上,考虑特征图的空间信息,将提取到的空间特征与坐标位置相结合作为权值预测网络的输入;最后,将权值预测网络预测出的卷积核与特征图结合,从而有效地放大特征图的尺寸,得到放大任意倍的高分辨率图像。所提的空间元学习模块可以与其他深度网络相结合,得到放大任意倍的超分辨率图像重建方法。所提的放大任意倍(非整数倍)超分辨率重建方法解决了实际生活中放大尺寸固定且非整数倍的重建问题。实验结果表明,所提的重建方法在空间复杂度(网络参数)相当的情况下,时间复杂度(计算量)是其他重建方法的25%~50%,且峰值信噪比(PSNR)比其他一些方法提高了0.01~5 dB,结构相似度(SSIM)提高了0.03~0.11。 展开更多
关键词 超分辨率 深度学习 空间元学习 残差密集模块 权值预测
下载PDF
基于多尺度循环网络的运动模糊图像复原方法
5
作者 张甜 卢振坤 +1 位作者 纪佳奇 刘胜 《现代计算机》 2023年第10期1-8,共8页
针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了... 针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了注意力机制的多尺度残差密集连接模块作为网络的基本结构。实验结果表明,与生成对抗网络相比,在GOPRO数据集的PSNR和SSIM最大分别提升了4.13 dB和0.0254 dB,和近年来效果最明显的SRN相比,Kohler数据集上的PSNR和SSIM分别提升了0.31 dB和0.0179 dB,具有更好的泛化性能。 展开更多
关键词 多尺度特征融合模块 残差密集型连接模块 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部