期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
融合残差块与Swin-Transformer机制的刀具磨损监测方法
1
作者 李泽稷 周学良 孙培禄 《现代制造工程》 CSCD 北大核心 2024年第8期126-135,共10页
为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行... 为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行平移融合;最后,通过回归层实现刀具磨损值监测。试验结果表明,融合一层残差块与一层stage机制的Swin-Transformer模型可以有效融合刀具磨损状态监测信号的全局信息,相比其他Swin-Transformer模型,不仅模型结构简单,而且具有更高的监测精度,利用PHM2010数据集验证的MSE、MAE和R2分别达到4.471 9、1.467 5和0.995 8。 展开更多
关键词 刀具 磨损监测 残差卷积神经网络 Swin-Transformer模型
下载PDF
NRCNN与角度度量融合的人脸识别方法 被引量:1
2
作者 梁晓曦 蔡晓东 +1 位作者 王萌 库浩华 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第6期144-149,共6页
常见的卷积神经网络通常使用分类损失来进行可分离的特征学习,在某些情况下存在特征的可区分性不足的问题,而一些改进的方法复杂度较高.为了在较低的复杂性下仍能保证较高的准确率,提出了一种基于嵌套残差卷积神经网络与角度度量的人脸... 常见的卷积神经网络通常使用分类损失来进行可分离的特征学习,在某些情况下存在特征的可区分性不足的问题,而一些改进的方法复杂度较高.为了在较低的复杂性下仍能保证较高的准确率,提出了一种基于嵌套残差卷积神经网络与角度度量的人脸识别方法.首先,设计了一种新颖的基于嵌套残差模块的人脸特征提取网络,通过多特征图融合的方式提取更丰富的特征;其次,使用了一种基于权值标准化的角度度量方法,通过对最后一个全连接层的权值进行标准化的操作来增强特征区分性.在网络训练时,结合上述两种方法使得学习到的特征满足最大类内距离小于最小类间距离的原则。实验表明,该方法在人脸标记数据库上测试准确率达到99.03%,相较于使用分类损失和其他度量学习的方法,该方法仅使用了单个网络并能在保证较高准确率的情况下付出更小的计算代价. 展开更多
关键词 嵌套残差卷积神经网络 权值标准化 角度度量 人脸识别
下载PDF
Vision Transformer的瞳孔定位方法
3
作者 王利 王长元 《西安工业大学学报》 CAS 2023年第6期561-567,共7页
为了解决现有瞳孔定位方法易受瞳孔图像质量的约束,采用CNN提取图像的局部特征,通过Transformer的编码器获得全局依赖关系,发掘出更为准确的瞳孔中心信息,在公开数据集上对比了主流的DeepEye和VCF瞳孔定位模型。结果表明:提出的基于混... 为了解决现有瞳孔定位方法易受瞳孔图像质量的约束,采用CNN提取图像的局部特征,通过Transformer的编码器获得全局依赖关系,发掘出更为准确的瞳孔中心信息,在公开数据集上对比了主流的DeepEye和VCF瞳孔定位模型。结果表明:提出的基于混合结构的Vision Transformer瞳孔定位方法在5像素误差内瞳孔中心的检测率比DeepEye提升了30%,比VCF提升了20%。 展开更多
关键词 深度学习 瞳孔定位 视觉转换器 分散注意力残差网络
下载PDF
时序示功图驱动的抽油机井结蜡预测及清蜡效果评价 被引量:6
4
作者 檀朝东 陈培堯 +4 位作者 杨亚少 于洋 宋健 冯钢 孙向飞 《石油钻采工艺》 CAS 北大核心 2022年第1期123-130,共8页
抽油机井结蜡是一个渐变的过程,序列示功图变化可以反映油井结蜡的程度。现场根据经验来预测结蜡程度和确定结蜡井热洗清蜡制度,决策能力低、效果差。应用人工智能技术认识结蜡程度与抽油机井示功图、电机运行参数、井口生产参数的关联... 抽油机井结蜡是一个渐变的过程,序列示功图变化可以反映油井结蜡的程度。现场根据经验来预测结蜡程度和确定结蜡井热洗清蜡制度,决策能力低、效果差。应用人工智能技术认识结蜡程度与抽油机井示功图、电机运行参数、井口生产参数的关联关系,开展数据驱动的抽油机井结蜡预测预警方法和热洗效果评价的研究。应用残差卷积神经网络(ResNet)提取结蜡井示功图特征,使用聚类算法确定其结蜡等级,融合提取的示功图图形特征和12项生产参数建立样本集,利用长短时记忆神经网络(LSTM)构建序列到序列网络结构模型对样本集进行训练,建立结蜡等级预测模型,定量预测抽油机井的结蜡等级,并构建了油井清蜡效果评价指数Q。研究结果表明,建立的抽油机井结蜡预测模型和清蜡效果评价指数实现了油井结蜡等级的定量化预测、洗井周期的决策、清蜡效果的有效评价,对精准确定清蜡时机、评价清蜡效果具有较好的指导作用,有效避免了蜡卡躺井,同时延长了油井免洗周期。 展开更多
关键词 抽油机井示功图 残差卷积神经网络 油井结蜡时序预测 长短时记忆神经网络 结蜡等级 热洗效果评价指数
下载PDF
基于一维残差卷积的烟叶分级方法研究
5
作者 孙祥洪 罗智勇 《现代电子技术》 北大核心 2024年第2期165-170,共6页
在烟叶分级过程中,由于人为主观性、分级标准不一致等因素导致分级结果不一致。针对以上问题,提出一种一维残差卷积的烟叶等级分类模型。首先,改进VGG16网络,将方形矩阵卷积核和池化窗口改为适应于一维光谱数据的向量卷积核和池化窗口... 在烟叶分级过程中,由于人为主观性、分级标准不一致等因素导致分级结果不一致。针对以上问题,提出一种一维残差卷积的烟叶等级分类模型。首先,改进VGG16网络,将方形矩阵卷积核和池化窗口改为适应于一维光谱数据的向量卷积核和池化窗口。然后,利用BasicBlock残差模块替换多层卷积叠加的结构,对光谱数据进行更深层的提取,防止梯度消失问题。最后,在卷积层后面接入BN层模块,通过归一化的方式,防止卷积计算后由于数据分布分散而导致的网络效率降低问题。选取B2V、B1F、C4F、C1L和X2L等5种不同等级的烟叶样本的近红外光谱数据进行实验。结果表明,所提方法对5种等级烟叶训练集和测试集的平均分类准确率分别为98.0%和97.3%,明显高于其他方法。该方法在一定程度上解决了烟叶人工分级带来的误差,减少了人力输出,提高了效率。 展开更多
关键词 烟叶分级 残差卷积神经网络 残差模块 近红外光谱 数据特征提取 数据采集
下载PDF
基于深度学习的埋地输气管道泄漏声波信号降噪研究
6
作者 陈孝月 《兰州文理学院学报(自然科学版)》 2024年第2期68-72,共5页
在埋地输气管道泄漏检测中,噪声会严重影响定位方法的精度.为了有效去除输气管道泄漏信号中的噪声,提出一种基于深度残差卷积神经网络的管道泄漏信号去噪方法.使用深度残差卷积神经网络搭建去噪模型,通过残差卷积块操作提取声波信息特征... 在埋地输气管道泄漏检测中,噪声会严重影响定位方法的精度.为了有效去除输气管道泄漏信号中的噪声,提出一种基于深度残差卷积神经网络的管道泄漏信号去噪方法.使用深度残差卷积神经网络搭建去噪模型,通过残差卷积块操作提取声波信息特征,利用跳跃连接将多个层间的信息进行整合,避免了传输信息的丢失.原始数据集采用实验室采集信号,训练集使用人为添加噪声生成.利用实际测得管道泄漏信号进行实验仿真,结果表明该方法能够有效去除管道泄漏信号中的噪声.与小波变换、经验模态分解(EMD)以及变分模态分解(VMD)去噪方法相比,本文方法去噪效果更好. 展开更多
关键词 深度学习 残差卷积神经网络 管道泄漏 信号去噪
下载PDF
基于改进残差神经网络的木材识别算法 被引量:4
7
作者 宿恒硕 吕军 +5 位作者 丁志平 唐彦杰 陈旭东 周强 张哲宇 姚青 《林业科学》 EI CAS CSCD 北大核心 2021年第12期147-154,共8页
【目的】针对传统木材种类人工鉴定方法存在的专业性强、任务重、周期长和非实时性等问题,提出一种基于改进残差神经网络的木材识别算法,以满足木材监管实时性和高效性需求。【方法】以32种横截面打磨后的木材为研究对象,首先,利用外带... 【目的】针对传统木材种类人工鉴定方法存在的专业性强、任务重、周期长和非实时性等问题,提出一种基于改进残差神经网络的木材识别算法,以满足木材监管实时性和高效性需求。【方法】以32种横截面打磨后的木材为研究对象,首先,利用外带微距镜头的手机采集8975幅木材横截面图像,通过R、G、B三通道平均灰度值计算增益系数,用各通道灰度值与对应增益系数的乘积代替原始通道灰度值,消除由图像采集设备和环境差异引起的偏色影响;其次,基于木材横截面宏观结构的自相似性,采用水平翻转、垂直翻转、添加椒盐噪声和图像分块方式获取更多的训练样本和图像特征,并保证不同种类的木材图像数量相对均衡;然后,通过双线性插值法将每幅分块子图像统一缩放至224×224像素,应用基于分块梯度加权的改进残差卷积神经网络ResNet101模型对每幅子图像进行特征提取,并计算每幅图像的最终识别得分;最后,选择平均准确率和平均召回率评价不同分块处理策略、不同模型和改进的残差卷积神经网络模型的识别结果。【结果】在同一测试集上,VggNet16、GoogleNet、DenseNet、MobileNetv3、ResNet50、ResNet101和ResNet152模型对32种相似木材横截面原图进行识别,平均识别准确率分别为71.3%、81.3%、83.2%、66.4%、87.9%、92.1%和90.5%,ResNet101模型适合于木材图像特征提取和种类鉴定;基于原图5×5、7×7和10×10分块的ResNet101模型,分别获得94.8%、96.5%和95.3%的平均准确率;将分块梯度加权策略应用于ResNet101模型,获得98.8%的平均准确率和99.1%的平均召回率,较基于原图、7×7分块的ResNet101模型,采用分块梯度加权方法改进的ResNet101模型的平均准确率分别提高6.7%和2.3%,平均召回率分别提高7.4%和2.8%,分块梯度加权方法可有效提升木材识别模型的准确率。【结论】基于分块梯度加权的ResNet101模型对32� 展开更多
关键词 木材识别 木材横截面图像 残差卷积神经网络 分块 梯度加权
下载PDF
进展期胃癌生存预测:基于增强CT深度学习模型的构建
8
作者 张文娟 张利文 +3 位作者 邓娟 任铁柱 徐敏 周俊林 《放射学实践》 CSCD 北大核心 2024年第4期488-495,共8页
目的:探讨基于术前增强CT构建的深度学习(DL)模型对进展期胃癌(AGC)1、2、3年生存概率的预测价值。方法:回顾性分析2013年1月-2015年12月在本院经病理证实为AGC的337例患者的临床和CT资料。按照7:3的比例将患者随机分为训练集(n=237)和... 目的:探讨基于术前增强CT构建的深度学习(DL)模型对进展期胃癌(AGC)1、2、3年生存概率的预测价值。方法:回顾性分析2013年1月-2015年12月在本院经病理证实为AGC的337例患者的临床和CT资料。按照7:3的比例将患者随机分为训练集(n=237)和验证集(n=100)。采用数据增强技术增加训练集的数据量,随后基于术前CT增强静脉期图像构建残差卷积神经网络结构的DL模型,预测AGC患者1、2、3年的生存概率。经Cox单因素及多因素分析构建临床模型,然后联合DL模型和临床模型构建综合模型并绘制其诺莫图。计算各模型的Harrel一致性指数(C-index)和风险比(HR),并应用Kaplan-Meier曲线、校准曲线及临床决策曲线比较3种模型对OS的预测效能。结果:在训练集和验证集中,临床模型、DL模型和综合模型的C-index值分别为0.70(95%CI:0.65~0.75)、0.72(95%CI:0.67~0.76)、0.74(95%CI:0.69~0.78)和0.64(95%CI:0.56~0.71)、0.66(95%CI:0.58~0.73)、0.67(95%CI:0.59~0.74),表明综合模型具有最优的生存期预测能力;三个模型的HR分别为2.72(95%CI:2.06~4.02)、2.88(95%CI:1.89~4.39)、2.72(95%CI:2.13~3.49)和2.11(95%CI:1.43~3.11)、4.32(95%CI:1.66~11.24)、1.89(95%CI:1.36~2.60),均以DL模型的HR最高,表明DL模型预测的高危人群具有更高的死亡风险。校准曲线分析显示基于综合模型的诺莫图预测AGC患者1、2、3年生存概率与实际的预后随访结果具有较高的一致性。临床决策曲线显示综合模型的净收益优于其它2种模型。结论:基于CT增强静脉期图像利用残差卷积神经网络构建的DL模型是一种良好的AGC患者生存风险评估模型,对AGC患者生存期的早期预判具有较高的临床应用价值。 展开更多
关键词 进展期胃癌 体层摄影术 X线计算机 残差卷积神经网 深度学习 预后
下载PDF
联合损失优化孪生网络的行人重识别 被引量:3
9
作者 樊琳 张惊雷 《计算机工程与科学》 CSCD 北大核心 2020年第2期273-280,共8页
针对行人重识别应用中行人图像易受到光照、相似着装、拍摄角度影响而出现难分样本对,导致错误匹配的问题,提出一种联合损失结合孪生网络的行人重识别优化算法。首先利用残差卷积神经网络提取图像特征,并以焦点损失(Focal Loss)和交叉... 针对行人重识别应用中行人图像易受到光照、相似着装、拍摄角度影响而出现难分样本对,导致错误匹配的问题,提出一种联合损失结合孪生网络的行人重识别优化算法。首先利用残差卷积神经网络提取图像特征,并以焦点损失(Focal Loss)和交叉熵损失的联合损失对提取的特征进行监督训练,增加模型对难分样本对的关注度;然后采用余弦距离计算图像间的相似度实现行人的重识别;最后加入重排序算法降低误匹配率。采用Market-1501和DukeMTMC-reID数据集进行实验,结果表明,该算法的匹配率分别为91.2%和84.4%,平均精度均值(mAP)分别为85.8%和78.6%。 展开更多
关键词 行人重识别 残差卷积神经网络 孪生网络 FOCAL LOSS
下载PDF
基于结构光的焊点智能识别算法设计 被引量:3
10
作者 朱齐丹 王彦柯 +1 位作者 朱伟 刘玥 《焊接学报》 EI CAS CSCD 北大核心 2019年第7期82-87,99,I0005,I0006,共9页
在自动焊接系统中,焊点的识别需要利用辅助激光,但是由于弧光的存在,而且一些金属材料具有反光性,这都会对辅助光的提取造成困难,因而影响到焊点的准确定位.基于此问题,利用反卷积结合特征金字塔网络,提出了基于热力图的焊点识别网络,... 在自动焊接系统中,焊点的识别需要利用辅助激光,但是由于弧光的存在,而且一些金属材料具有反光性,这都会对辅助光的提取造成困难,因而影响到焊点的准确定位.基于此问题,利用反卷积结合特征金字塔网络,提出了基于热力图的焊点识别网络,该网络通过残差卷积神经网络进行提取特征,并利用金字塔策略将不同尺度的特征映射成特征点热力图,根据热力图得到焊点的最终准确位置.最后进行与模版匹配及原始的特征金字塔网络的对比试验.结果表明,该网络在对焊点的识别中比前两者的表现突出,而且鲁棒性较强,对于各种噪声和复杂的干扰具有很强的抵抗力. 展开更多
关键词 结构光 残差卷积神经网络 特征金字塔网络 热力图 焊点识别
下载PDF
基于AE-RCNN的洪水分级智能预报方法研究 被引量:2
11
作者 苑希民 李达 +3 位作者 田福昌 何立新 王秀杰 郭立兵 《水利学报》 EI CSCD 北大核心 2023年第9期1070-1079,共10页
复杂产汇流特性地区使用洪水分级预报方法可提高预报精度,本文提出一种基于自编码器(Autoencoder,AE)和残差卷积神经网络(Residual Convolutional Neural Network,RCNN)的洪水分级智能预报方法,使用自编码器和K均值聚类算法实现对原始... 复杂产汇流特性地区使用洪水分级预报方法可提高预报精度,本文提出一种基于自编码器(Autoencoder,AE)和残差卷积神经网络(Residual Convolutional Neural Network,RCNN)的洪水分级智能预报方法,使用自编码器和K均值聚类算法实现对原始水文数据的特征提取和洪水分级,通过RCNN模型提升卷积神经网络的有效训练深度,以山东省小清河流域黄台桥水文站为例开展洪水分级智能预报研究。结果表明应用降维数据聚类的AE-RCNN模型MAE指标、RMSE指标、NSE指标分别为5.04、7.91、0.92,优于CNN模型、RCNN模型和降雨聚类RCNN模型。该方法能够有效提取水文数据特征、提高洪水预报精度。 展开更多
关键词 洪水分级智能预报 AE-RCNN 数据驱动模型 自编码器 残差卷积神经网络
下载PDF
基于深度学习的三维乳腺超声影像自适应分割 被引量:1
12
作者 李晓峰 王妍玮 卫晋 《吉林大学学报(信息科学版)》 CAS 2023年第1期84-92,共9页
针对传统乳腺超声影像分割算法存在准确率低、精度低且耗时长等问题,提出基于深度学习的三维乳腺超声影像自适应分割算法。首先预处理图像,采用深度多示例学习方法检测病变图像块,删除正常图像块。然后对乳腺超声影像数据集扩增处理,用... 针对传统乳腺超声影像分割算法存在准确率低、精度低且耗时长等问题,提出基于深度学习的三维乳腺超声影像自适应分割算法。首先预处理图像,采用深度多示例学习方法检测病变图像块,删除正常图像块。然后对乳腺超声影像数据集扩增处理,用于神经网络训练。其次构建残差卷积神经网络模型,设计残差学习单元,结合扩增数据集形成特征映射,采用softmax函数训练网络并进行特征块判断,并结合阈值设置实现三维乳腺超声影像自适应分割。实验结果表明,该算法能更细致地完成图像分割,算法平均运行耗时为52.3 s,图像分割精度为95.5%,且F1分数值高,整体性能佳,为卷积神经网络分割应用提供参考。 展开更多
关键词 三维乳腺超声 病变检测 数据集扩增 残差卷积神经网络 深度学习
下载PDF
基于残差卷积神经网络模型的勺嘴鹬动作识别
13
作者 杨雪珂 蒙金超 +3 位作者 冯悦恒 林婷婷 王兆君 刘辉 《热带生物学报》 2023年第5期481-489,共9页
为开启海南热带地区鸻鹬类涉禽的动作识别以及其他野生鸟类行为学自动识别的研究,建立了基于野外采集影像的勺嘴鹬(Eurynorhynchus pygmeus)动作图像数据集。该数据集由表达勺嘴鹬主要行为模式的9种动作标签组成;同时利用ResNet50、ResN... 为开启海南热带地区鸻鹬类涉禽的动作识别以及其他野生鸟类行为学自动识别的研究,建立了基于野外采集影像的勺嘴鹬(Eurynorhynchus pygmeus)动作图像数据集。该数据集由表达勺嘴鹬主要行为模式的9种动作标签组成;同时利用ResNet50、ResNet101和ResNet152共3种残差卷积神经网络模型尝试对勺嘴鹬的动作进行自动识别。结果表明,ResNet50、ResNet101、ResNet152测试集准确率分别为96.90%、96.94%和96.90%,说明3种模型都能对勺嘴鹬图像进行快速准确的动作识别。 展开更多
关键词 残差卷积神经网络 鸟类图像 动作识别 勺嘴鹬
下载PDF
Shearlet域深度残差CNN用于沙漠地震信号去噪 被引量:10
14
作者 郑升 李月 董新桐 《吉林大学学报(信息科学版)》 CAS 2019年第1期1-7,共7页
由于沙漠地震信号中含有较强的随机噪声,从而给沙漠地震数据的处理和解释带来了很大的困难。针对上述问题,提出了一种基于Shearlet变换的深度残差卷积神经网络(ST-CNN:Deep Residual Convolutional Neural Network for Shearlet Transfo... 由于沙漠地震信号中含有较强的随机噪声,从而给沙漠地震数据的处理和解释带来了很大的困难。针对上述问题,提出了一种基于Shearlet变换的深度残差卷积神经网络(ST-CNN:Deep Residual Convolutional Neural Network for Shearlet Transform)模型,实现沙漠地震信号的随机噪声压制。在训练阶段,将沙漠地震信号经Shearlet分解后的系数作为输入,将随机噪声经Shearlet分解后的系数作为标签,通过卷积神经网络(CNN:Convolutional Neural Network)学习输入和标签之间的映射关系;在测试阶段,利用此映射关系即可从沙漠地震信号系数中预测出噪声系数,并间接地获得有效信号系数,最后通过Shearlet反变换获得有效信号。通过与传统的Shearlet硬阈值去噪算法对比,发现该算法可把沙漠地震信号的信噪比从-4. 48 d B提高到14. 15 d B,具有更好的去噪效果。 展开更多
关键词 沙漠地震信号 噪声压制 SHEARLET变换 深度残差卷积神经网络
下载PDF
基于RCNN的双极化气象雷达天气信号检测 被引量:4
15
作者 高涌荇 王旭东 +3 位作者 汪玲 朱岱寅 郭军 孟凡旺 《系统工程与电子技术》 EI CSCD 北大核心 2022年第11期3380-3387,共8页
为检测混杂在地杂波、生物杂波中的天气信号,提高定量降水精度,提出了基于残差卷积神经网络(residual convolutional neural network, RCNN)的天气信号检测算法。首先,将采集的极化参数水平反射率因子、差分反射率、相关系数、差分相移... 为检测混杂在地杂波、生物杂波中的天气信号,提高定量降水精度,提出了基于残差卷积神经网络(residual convolutional neural network, RCNN)的天气信号检测算法。首先,将采集的极化参数水平反射率因子、差分反射率、相关系数、差分相移率堆叠为三维数组后进行预处理,将其分为天气信号与杂波信号。然后,开发并优化RCNN,给出详细的网络结构。最后,通过多次实际的降水过程对所提算法的检测效果进行评价。结果表明,相比支持向量机以及卷积神经网络(convolutional neural network, CNN),所提算法对天气信号的检测效果更好,并且在不同仰角以及全年的实测数据上均表现出良好的检测性能。 展开更多
关键词 双极化气象雷达 残差卷积神经网络 天气信号检测 深度学习
下载PDF
基于RCNN-ABiLSTM的机械设备剩余寿命预测方法 被引量:2
16
作者 闫啸家 梁伟阁 +2 位作者 张钢 佘博 田福庆 《系统工程与电子技术》 EI CSCD 北大核心 2023年第3期931-940,共10页
针对机械设备的关键退化信息易淹没在非线性、多维度、长时间、大规模监测数据中的问题,提出了一种基于残差卷积神经网络和注意力双向长短时记忆网络融合(residual convolutional neural network-attentional bidirectional long short-... 针对机械设备的关键退化信息易淹没在非线性、多维度、长时间、大规模监测数据中的问题,提出了一种基于残差卷积神经网络和注意力双向长短时记忆网络融合(residual convolutional neural network-attentional bidirectional long short-term memory network,RCNN-ABiLSTM)的机械设备剩余寿命预测方法。首先通过训练RCNN提取监测数据的深度空间特征;然后通过引入注意力机制,优化双向长短时记忆网络提取时间相关特征的权重参数,加强关键退化信息对剩余寿命预测的表达;最后通过航空发动机数据集验证了方法的有效性。分析结果表明,对于运行条件复杂和故障模式多变的多维监测数据,所提方法能够准确寻找退化时间点,有效提高长时间运行设备的剩余寿命预测准确度。 展开更多
关键词 残差卷积神经网络 注意力机制 融合模型 剩余寿命预测 航空发动机
下载PDF
基于分步目标定位的腰椎间盘自动诊断方法 被引量:2
17
作者 巩稼民 杨红蕊 +4 位作者 郭庆庆 蒋杰伟 潘琼 马豆豆 高燕军 《中国医学物理学杂志》 CSCD 2021年第3期317-322,共6页
针对当前腰椎间盘自动诊断方法存在的准确率偏低的问题,提出一种基于分步目标定位的计算机辅助诊断方法。该方法首先使用Faster R-CNN目标定位网络预处理腰椎间盘影像,去除韧带以及周围噪声区域,获得腰椎间盘的轮廓区域;然后放大定位的... 针对当前腰椎间盘自动诊断方法存在的准确率偏低的问题,提出一种基于分步目标定位的计算机辅助诊断方法。该方法首先使用Faster R-CNN目标定位网络预处理腰椎间盘影像,去除韧带以及周围噪声区域,获得腰椎间盘的轮廓区域;然后放大定位的间盘轮廓3倍,再次利用Faster R-CNN网络精细化定位病灶区域,从而解决因病灶目标太小而无法准确定位的问题;最后,将病灶区域输入到改进的残差卷积神经网络中以提取高层特征和严重性分级,改进的残差卷积神经网络(ResNet-20)通过建立短路机制以提高分类器的准确率。实验结果表明,相较于传统的诊断方法,该方法将腰椎间盘突出的诊断准确率提升5.1%。 展开更多
关键词 腰椎间盘突出 分步目标定位 Faster R-CNN网络 改进的残差卷积神经网络 计算机辅助诊断系统
下载PDF
一种基于R3D网络的人体行为识别算法 被引量:2
18
作者 吴进 安怡媛 代巍 《电讯技术》 北大核心 2020年第8期865-870,共6页
现有的行为识别算法不能充分地提取抽象的行为特征,为此提出了基于三维残差卷积神经网络(3D Residual Convolutional Neural Network,R3D)的人体行为识别算法。该网络在三维卷积神经网络(3D Convolutional Neural Network,3D-CNN)基础... 现有的行为识别算法不能充分地提取抽象的行为特征,为此提出了基于三维残差卷积神经网络(3D Residual Convolutional Neural Network,R3D)的人体行为识别算法。该网络在三维卷积神经网络(3D Convolutional Neural Network,3D-CNN)基础上加入了残差模块,可以更好地提取时空域的特征,然后通过改变步长大小进行特征图降维,提高网络效率,并加入批量归一化层和Softplus激活函数,提高网络的收敛速度和拟合能力;之后添加Dropout层,降低过拟合风险,并且使用全局平均池化层(Global Average Pooling,GAP)代替全连接层,克服了网络参数量过大的问题;最后,使用Softmax进行分类。实验结果表明,使用R3D网络在HMDB-51数据集上获得了62.3%的识别率。 展开更多
关键词 行为识别 三维残差卷积神经网络 批量归一化层 全局平均池化层
下载PDF
基于残差图卷积深度网络的电网无功储备需求快速计算方法 被引量:3
19
作者 陈光宇 袁文辉 +2 位作者 徐晓春 戴则梅 闪鑫 《电工技术学报》 EI CSCD 北大核心 2023年第17期4683-4700,共18页
针对电网无功储备需求计算复杂度高、耗时长的问题,提出一种基于残差图卷积深度网络考虑冗余样本特征削减的电网无功储备需求快速计算方法。该文首先,给出一种基于深度学习的电网无功储备需求快速计算框架,采用残差图卷积深度神经网络(G... 针对电网无功储备需求计算复杂度高、耗时长的问题,提出一种基于残差图卷积深度网络考虑冗余样本特征削减的电网无功储备需求快速计算方法。该文首先,给出一种基于深度学习的电网无功储备需求快速计算框架,采用残差图卷积深度神经网络(GCNII)对电网无功储备需求计算进行建模;其次,为克服传统相似性计算方法在拓扑属性样本度量问题上的局限,提出一种双尺度相似性度量方法,基于矩阵奇异值序列的余弦距离实现对拓扑结构样本的相似性度量;最后,提出一种冗余样本削减策略,基于双尺度相似性度量方法,结合改进谱聚类算法实现对样本集合的分层聚类,并通过样本局部密度分析,实现在维持数据集特征多样性的情况下,对冗余样本进行有效削减,提升模型训练效率。所提算例采用IEEE标准节点系统进行仿真,计算结果表明,该方法能够实现在模型计算精度基本不变的情况下大幅提升模型训练效率。 展开更多
关键词 残差图卷积神经网络 无功储备需求计算 样本削减策略 矩阵奇异值序列 双尺度相似性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部