Few studies have investigated scale-up of the residence-time distribution (RTD) of particles in bubbling fluidized beds (BFBs) with continuous particle flow. Two approaches were investigated in this study: first,...Few studies have investigated scale-up of the residence-time distribution (RTD) of particles in bubbling fluidized beds (BFBs) with continuous particle flow. Two approaches were investigated in this study: first, using well-known scaling laws that require changes in particle properties and gas velocity; second, using a simple approach keeping the same particles and gas velocity for different beds. Our theoretical analysis indicates it is possible to obtain similar RTDs in different BFBs with scaling laws if the plug-flow residence time (tpiug) is changed as m^0.5, where m is the scaling ratio of the bed; however, neither approach can ensure similar RTDs if tplug is kept invariant. To investigate RTD variations using two approaches without changing tplug, we performed experiments in three BFBs. The derivatives dE(θ)/dθ (where E(θ) is the dimensionless RTD density function and θ is the dimensionless time) in the early stage of the RTDs always varied with m 1, which was attributed to the fact that the particle movement in the early stage were mainly subject to dispersion. Using the simple approach, we obtained similar RTDs by separately treating the RTDs in the early and post-stages. This approach guarantees RTD similarity and provides basic rules for designing BFBs.展开更多
The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame...The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame(MRF) were adopted. The various values of initial rotating speed and inlet flow rate were adopted. Simulations were validated with experimental residence time distribution(RTD) determination. It is shown that the fluid flow is very turbulent and the flow pattern approaches to the plug flow. The velocity increases from shaft to the end of impeller,and the gradient is enlarged by increasing the rotating speed. Comparison between RTD curves shows that agitation can improve the performance of reactor. As the flow rate increases,the mean residence time decreases proportionally,and the variance of RTD lessens as well. When rotating speed increases to a certain value,the variance of RTD is enlarged by increasing rotating speed,but the mean residence time has no obvious change.展开更多
文摘Few studies have investigated scale-up of the residence-time distribution (RTD) of particles in bubbling fluidized beds (BFBs) with continuous particle flow. Two approaches were investigated in this study: first, using well-known scaling laws that require changes in particle properties and gas velocity; second, using a simple approach keeping the same particles and gas velocity for different beds. Our theoretical analysis indicates it is possible to obtain similar RTDs in different BFBs with scaling laws if the plug-flow residence time (tpiug) is changed as m^0.5, where m is the scaling ratio of the bed; however, neither approach can ensure similar RTDs if tplug is kept invariant. To investigate RTD variations using two approaches without changing tplug, we performed experiments in three BFBs. The derivatives dE(θ)/dθ (where E(θ) is the dimensionless RTD density function and θ is the dimensionless time) in the early stage of the RTDs always varied with m 1, which was attributed to the fact that the particle movement in the early stage were mainly subject to dispersion. Using the simple approach, we obtained similar RTDs by separately treating the RTDs in the early and post-stages. This approach guarantees RTD similarity and provides basic rules for designing BFBs.
基金Project(20050145029) supported by the PhD Program Foundation of Ministry of Education of ChinaProject supported by the Foundation of Excellent Talents of Science and Technology of Liaoning Province, China
文摘The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame(MRF) were adopted. The various values of initial rotating speed and inlet flow rate were adopted. Simulations were validated with experimental residence time distribution(RTD) determination. It is shown that the fluid flow is very turbulent and the flow pattern approaches to the plug flow. The velocity increases from shaft to the end of impeller,and the gradient is enlarged by increasing the rotating speed. Comparison between RTD curves shows that agitation can improve the performance of reactor. As the flow rate increases,the mean residence time decreases proportionally,and the variance of RTD lessens as well. When rotating speed increases to a certain value,the variance of RTD is enlarged by increasing rotating speed,but the mean residence time has no obvious change.